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The basic idea

• Question: should we tax today or should we postpone taxes and issue
debt (≡ future taxes)?

• What matters for this trade-off? the price of government debt.

• This paper: Build a general theory of optimal fiscal policy around the
following “tax-smoothing” principle:

• Optimality condition wrt to (some measure of) debt.

• LHS: MC of issuing more debt: costly due to more taxes tomorrow.

• RHS: Marginal revenue of new debt issuance × social value of relaxing
the government budget.

• Principle: Levy more taxes on states/dates if MR of debt is high

• ⇒ Tax more tomorrow vs today if it is cheaper to issue debt!
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Asset markets matter

• Market value of the government debt portfolio depends on:

1 Stochastic Discount Factor (e.g. time-additive or recursive utility).

2 Market structure (complete or incomplete markets).

3 Timing protocol (commitment versus discretion).

• What I do: Take asset prices seriously.

• Use a plausible model of asset returns ⇒ (Generalized) recursive utility.

• Market structure: consider complete or incomplete markets.

• Timing prot.: commitment for the presentation (for discretion see

paper)

• The MR is activated with recursive utility.

• The same principle Taxes = Φ×MR emerges in each environment
; tax-smoothing !

• Related literature
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Preview of results

Complete markets

• Time-additive utility: Lucas and Stokey (1983)

• Keep labor tax essentially constant ⇒ tax-smoothing.

• No drifts.

• No endogenous persistence.

• Recursive utility.

• Taxes are not constant⇒ tax more in good times and less in bad times.

• Back-loading of distortions.

• High endogenous persistence.

Incomplete markets

• Time-additive utility: Barro (1979) and Aiyagari et al. (2002)

• Tax more in bad times and less in good times.

• “Averaging” of distortions (taxes are random walks)

• Recursive utility.

• Tax even more in bad times and even less in good times.

• Random-walk results break down (no “averaging”).
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Economy

• Economy without capital and exogenous and stochastic gt (TFP shocks can
be easily incorporated)

ct(g
t) + gt = ht(g

t)

• Two market structures:

1 State-contingent debt (complete markets) as in Lucas and Stokey (1983):

bt(g
t) = τt(g

t)wt(g
t)ht(g

t)− gt︸ ︷︷ ︸
primary surplus

+
∑
gt+1

pt(gt+1, g
t)bt+1(gt+1)

︸ ︷︷ ︸
portfolio of new debt

2 Non-contingent debt as in Aiyagari et al. (2002):

bt−1(gt−1) = τt(g
t)wt(g

t)ht(g
t)− gt + qt(g

t)bt(g
t)
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Preferences

• General form of recursive utility (Kreps and Porteus (1978)):

Vt = u(ct, 1− ht) + β H−1(EtH(Vt+1)
)︸ ︷︷ ︸

Certainty equivalent µt

• H increasing and concave ⇒ aversion towards risks in Vt+1.

• A(x) ≡ −H ′′/H ′ coefficient of absolute risk aversion.

• Time-additive utility: H(x) = x.

• Three parametric examples:

1 Constant absolute risk aversion: H(x) = exp(−Ax)
−A , A > 0.

2 Constant relative risk aversion: H(x) = x1−α−1
1−α , α 6= 1, α, u > 0.

3 Logarithmic case, α = 1: H(x) = lnx.

• Nests the following: Epstein and Zin (1989), Weil (1990), Hansen and
Sargent (2001), Tallarini (2000), Swanson (2018).
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2 Constant relative risk aversion: H(x) = x1−α−1
1−α , α 6= 1, α, u > 0.

3 Logarithmic case, α = 1: H(x) = lnx.

• Nests the following: Epstein and Zin (1989), Weil (1990), Hansen and
Sargent (2001), Tallarini (2000), Swanson (2018).



Stochastic Discount Factor
• Two components: Consumption (short-run) risk vs Continuation value risk

(long-run):

St+1 = β
uc,t+1

uct

H ′(Vt+1)

H ′(µt)︸ ︷︷ ︸
≡mt+1

• Agent dislikes volatility in utility ⇒ Vt+1 ↓⇒ SDF ↑.
• Exponential CE:

mt+1 =
exp(−AVt+1)

Et exp(−AVt+1)
, Etmt+1 = 1

• Power CE (α 6= 1):

mt+1 =

(
Vt+1

µt

)−α
= κt+1

− α
1−α , where κt+1 ≡

V 1−α
t+1

EtV
1−α
t+1

, Etκt+1 = 1

• Logarithmic CE:

mt+1 = exp
(
−(vt+1 − Etvt+1)

)
, vt+1 ≡ lnVt+1, Et lnmt+1 = 1.
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Optimal policy under commitment
• Distortionary taxation:

ult
uct

= (1− τt)wt

• Optimal policy problem: choose τ to maximize the utility of the
representative household at t = 0.

• Formulate commitment problem recursively as in Kydland and Prescott
(1980).

• Important: Vt shows up in the implementability constraints due to recursive
utility.

• State variables
• Complete markets: zt ≡ uctbt, debt in MU units.

• Incomplete markets: Bt ≡ Etmt+1uc,t+1 · bt, debt in average MU units.

• Value function with complete markets: Complete markets under commitment

• Value function with incomplete markets: Incomplete markets under commitment

• Φt : excess burden (multiplier on implementability constraint) ⇒ Captures

taxes.
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Recursive utility: price effect of continuation values

• Let gL < gH . Planner insures ex-ante:

• sells debt against gL ⇒ to be paid with a surplus when g′ = gL

• buys assets against gH ⇒ finances a deficit when g′ = gH .

• How much debt/assets?
• Expected utility: Make tax rate constant across gi, i = L,H.

• Recursive utility: Planner over-insures:
• Sells more debt against gL and increase taxes when g′ = gL

• Buys more assets against gH and decrease taxes when g′ = gH .

• Why? DebtL ↑ ⇒ VL ↓⇒ SDFL ↑ : price of claims sold ↑.

• Tax more at gL since it becomes cheaper to issue debt against gL.

• Tax less at gH because assets against gH become more profitable
(SDFH ↓).
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Excess burden with complete markets I

• Optimality condition wrt zt+1 ≡ uc,t+1bt+1.

•
• ηt+1: relative debt in MU units adjusted by A(x) ≡ −A′′/A′.

ηt+1 ≡ A(Vt+1)zt+1︸ ︷︷ ︸
“debt”

−A(µt)

value of portfolio︷ ︸︸ ︷
Etmt+1zt+1

• ηt+1 ≡ 0 for time-additive utility (or for the deterministic case).



Excess burden with complete markets I

• Time-additive utility: Lucas and Stokey (1983)

Φt+1︸ ︷︷ ︸
MC

= Φt︸︷︷︸
MB

· 1,∀t, st

• MR part trivial ⇒ keep distortions constant over states and dates
(“tax-smoothing”).

• ηt+1: relative debt in MU units adjusted by A(x) ≡ −A′′/A′.

ηt+1 ≡ A(Vt+1)zt+1︸ ︷︷ ︸
“debt”

−A(µt)
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Excess burden with complete markets II
• LoM in terms of inverse excess burden of taxation

1

Φt+1
=

1

Φt
− ηt+1

• Tax more tomorrow vs today (Φt+1(g′) > Φt) when issue relatively more
debt (ηt+1(g′) > 0).

• Tax less tomorrow vs today (Φt+1(g′) < Φt) when issue relatively less debt

(ηt+1(g′) < 0).

• Expect ηt+1(gL) > 0 > ηt+1(gH) due to fiscal hedging (issue more debt
against good times) ⇒ Φt+1(gL) > Φt > Φt+1(gH).

• ⇒ Tax more in good times and less in bad times ⇒ amplify Lucas and
Stokey (1983).

• ⇒ run larger surpluses in good times and larger deficits in bad times.

• parametric examples, persistence and drifts

• optimal tax rate numerical exercises
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What happens with incomplete markets?

• Debt non-contingent ⇒ less room for manipulation of SDF?

• Let gL < gH . Planner issues non-contingent debt:

• In good times, g′ = gL, the planner will tax less to repay debt and
finance gL.

• In bad times, g′ = gH , the planner will have to tax more to repay debt
and finance gH .

• How much non-contingent debt does the planner issue?

• Expected utility: Make tax rate on average constant across gi, i = L,H.

• Recursive utility:
• Is there a counter-acting force (tax more in good times and less in bad

times)? NO.

• Price manipulation: Use continuation values to make the average SDF
(inverse of interest rate) large.

• Result: put more tax distortions on events with high uc ⇒ tax even
more bad times with high uc.
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• optimal tax rate
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Concluding remarks

• Minimization of welfare distortions ⇒ tax more events against which it
is cheap to issue debt (Taxes=Φ×MR).

• This insight holds in all environments ⇒ provides a general principle of
taxation.

• This does not mean taxes are (on average or not) smooth!

• Taking asset prices seriously ⇒ amplification of standard taxation and
debt issuance motives.



THANK YOU!
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Value function with complete markets under commitment
• z ≡ uc · b.

V (z, g) = max
c≥0,h∈[0,1],z′

g′∈Z(g′)
u(c, 1− h) + βH−1

(∑
g′

π(g′|g)H
(
V (zg′ , g

′)
))

subject to

z = ucc− ulh︸ ︷︷ ︸
surplus

+ β
∑
g′

π(g′|g)m′g′z
′
g′︸ ︷︷ ︸

price x debt

c+ g = h

• Value functions in the constraint due to the SDF:

m′g′ ≡
H ′(V (z′g′ , g

′))

H ′(µ)
, and µ ≡ H−1

(∑
g′

π(g′|g)H
(
V (z′g′ , g

′)
))
.

• m′g′ ≡ 1 for time-additive utility.

Return
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Value function with incomplete markets under commitment
• State variable Bt ≡ Etmt+1uc,t+1 · bt.

• Commit to average marginal utility: promises across states g.

W (B−, g−) = max
cg≥0,hg∈[0,1],Bg

H−1
(∑

g

π(g|g−)H
(
u(cg, 1− hg) + βW (Bg, g)

))
subject to

uc(cg, 1− hg)∑
g π(g|g−)mguc(cg, 1− hg)

B− = uccg − ulhg︸ ︷︷ ︸
surplus

+ βBg︸︷︷︸
new debt

, ∀g

cg + g = hg, ∀g
Bg ≤ Bg ≤ B̄g, ∀g.

• Value functions W in mg:

mg =
H ′
(
u(cg, 1− hg) + βW (Bg, g)

)
H ′
(
H−1

(∑
g π(g|g−)H(u(cg, 1− hg) + βW (Bg, g))

)) , ∀g.
Return
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Parametric examples and drifts
• Exponential CE:

ηt+1 = A · [zt+1 − Etmt+1zt+1]⇒ Etmt+1ηt+1 = 0

• ⇒ 1/Φt martingale wrt πt ·Mt

⇒ Φt submartingale wrt πt ·Mt,

Etmt+1Φt+1 ≥ Φt.

• Drift wrt physical measure?

EtΦt+1 ≥ Φt − Covt(mt+1,Φt+1)

⇒ if Covt < 0 ⇒ positive drift wrt πt.

• Power CE, α 6= 1

ηt+1 = α · [V −1t+1zt+1 − Etκt+1V
−1
t+1zt+1]⇒ Etκt+1ηt+1 = 0

• ⇒ 1/Φt martingale wrt πt ·Kt ⇒ positive drift wrt πt ·Kt.

• Logarithmic CE:

ηt+1 = V −1t+1zt+1 − EtV −1t+1zt+1

• ⇒ 1/Φt martingale wrt πt ⇒ positive drift wrt πt. .
Return
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Optimal tax rate I

• Complete markets and commitment, t ≥ 1

τt =
Φt(εcc,t + εch,t + εhh,t + εhc,t)

1 + Φt(1 + εhh,t + εhc,t)

where εcc ≡ −uccc/uc, εch ≡ uclh/uc and εhh ≡ −ullh/ul, εhc ≡ uclc/ul,
the respective own and cross elasticities.

• Assume a utility function with constant elasticities

U(c, 1− h) =
c1−ρ − 1

1− ρ
− ah

h1+φh

1 + φh

• ⇒ τt moves 1-1 with Φt, with law of motion

1

τt+1
=

1

τt
− 1

ρ+ φh
ηt+1

Return



Optimal tax rate I

• Complete markets and commitment, t ≥ 1

τt =
Φt(εcc,t + εch,t + εhh,t + εhc,t)

1 + Φt(1 + εhh,t + εhc,t)

where εcc ≡ −uccc/uc, εch ≡ uclh/uc and εhh ≡ −ullh/ul, εhc ≡ uclc/ul,
the respective own and cross elasticities.

• Assume a utility function with constant elasticities

U(c, 1− h) =
c1−ρ − 1

1− ρ
− ah

h1+φh

1 + φh

• ⇒ τt moves 1-1 with Φt, with law of motion

1

τt+1
=

1

τt
− 1

ρ+ φh
ηt+1

Return



Optimal tax rate II: Incomplete markets and commitment

• Power in c and h (constant Frisch): The optimal tax rate with
recursive utility is

τt =
Φt(ρ+ φh)− ρ

[
Φt − Et−1ntΦt

] bt−1

ct

1− (Et−1ntΦt)ξtbt−1 + Φt(1 + φh)

• The respective tax rate for the time-additive case of Aiyagari et al.
(2002) is

τt =
Φt(ρ+ φh)− ρ

[
Φt − Φt−1

] bt−1

ct

1 + Φt(1 + φh)

• if ξt > 0 (marginal utility relatively high) ⇒ tax rate ↑.
Return



Excess burden without commitment and complete markets
• Value functions: Complete markets- MPE

• Excess burden with time-additive utility:

Φt+1 = Φt · [1 +
ucc,t+1 − ucl,t+1

uc,t+1

∂C
∂Bt+1

·Bt+1]︸ ︷︷ ︸
∝Φ×MR

.

• Excess burden with recursive utility:

1

Φt+1
= [1 +

ucc,t+1 − ucl,t+1

uc,t+1

∂C
∂bt+1

· bt+1]−1
[ 1

Φt
− νt+1

]
• Relative “debt” position:

νt+1 ≡ A(Vt+1)uc,t+1bt+1 −A(µt) · Etmt+1uc,t+1bt+1.

• u′c channel: tax more tomorrow vs today if you issue debt.

• Vt+1: tax more (less) if debt is relatively high (low).

• ⇒ the two incentives may oppose each other.
Return
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Excess burden without commitment and incomplete markets

• Value function: Incomplete markets -MPE

• Excess burden with time-additive utility:

Etxt+1Φt+1 = Φt ·
[
1 + Etxt+1

ucc,t+1 − ucl,t+1

uc,t+1

∂C
∂Bt+1

·Bt+1

]
where xt+1 ≡ uc,t+1/Etuc,t+1

• Excess burden with recursive utility:

Etnt+1Φt+1(1− ξt+1btΦt) = Φt
[
1 + Etnt+1

ucc,t+1 − ucl,t+1

uc,t+1
Cb,t+1 · bt

]

• with ξt+1 ≡ A(Vt+1)uc,t+1 −A(µt)Etmt+1uc,t+1.

• “Averaging” with respect to nt+1 measure.

• Continuation value channel depends on relative marginal utility ξt+1.

Return



Excess burden without commitment and incomplete markets

• Value function: Incomplete markets -MPE

• Excess burden with time-additive utility:

Etxt+1Φt+1 = Φt ·
[
1 + Etxt+1

ucc,t+1 − ucl,t+1

uc,t+1

∂C
∂Bt+1

·Bt+1

]
where xt+1 ≡ uc,t+1/Etuc,t+1

• Excess burden with recursive utility:

Etnt+1Φt+1(1− ξt+1btΦt) = Φt
[
1 + Etnt+1

ucc,t+1 − ucl,t+1

uc,t+1
Cb,t+1 · bt

]

• with ξt+1 ≡ A(Vt+1)uc,t+1 −A(µt)Etmt+1uc,t+1.

• “Averaging” with respect to nt+1 measure.

• Continuation value channel depends on relative marginal utility ξt+1.

Return



Value function with complete markets and no commitment

• Markov-perfect equilibrium: state variable (b, g).

V (b, g) = max
c,h,b′

g′

u(c, 1− h) + βH−1
(∑
g′

π(g′|g)H(V (b′g′ , g
′))
)

subject to

ucb = ucc− ulh+ β
∑
g′

π(g′|g)m′g′uc(C(b′g′ , g′), 1−H(b′g′ , g
′))b′g′︸ ︷︷ ︸

Recursive utility + Markov-perfect

c+ g = h

• where m′g′ ≡
H′(V (b′

g′ ,g
′))

H′(µ)

• MPE: c = C, h = H.

Return



Value function with incomplete markets and no commitment

• State variable is non-contingent debt: (b−, g).

V (b−, g) = max
c≥0,h∈[0,1],b∈B

u(c, 1− h) + βH−1
(∑
g′

π(g′|g)H(V (b, g′))
)

subject to

uc(c, 1− h)b− = ucc− ulh+ β
(∑
g′

π(g′|g)m′g′uc(C(b, g′), 1−H(b, g′))
)

︸ ︷︷ ︸
Average MU

· b

c+ g = h

where m′g′ ≡
H′
(
V (b,g′))

H′
(
H−1

(∑
g′ π(g′|g)H(V (b,g′))

)) .

• MPE: c = C, h = H.

Return



Numerical exercises- Karantounias (2018)

Calibration:

• Utility function: ρ = 1 < γ

vt = ln ct − ah
h1+φht

1 + φh
+

β

(1− β)(1− γ)
lnEt exp

(
(1− β)(1− γ)vt+1

)
• Parameters: (β, φh, γ) = (0.96, 1, 10)

• Shocks
• i.i.d. shocks: mean 20% and std 2%.
• Chari et al. (1994) shocks.

Computational issues:

• Endogenous state space.

• Lack of the contraction property due to the value function in the
constraint.

• Non-convexities.



Instructive sample path
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Random sample paths
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Volatility and back-loading of distortions
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• Positive drift.

• Increasing volatility over time, “fanning-out” of the distribution.



Stationary moments

Tax rate in % i.i.d. CCK shocks 2× std(g)

Mean 30.86 30.49 31.26

St. Dev 4.94 5.52 7.76

St. Dev of ∆ 0.17 0.41 0.90
Autocorrelation 0.9994 0.9972 0.9932

• Enormous volatility of the tax rate and therefore of debt .

• Chari et al. (1994): volatility of tax rate of 5-15 basis points.

Return



Stationary distribution: debt

debt/output in % i.i.d. CCK shocks 2× std(g)

Mean 181.97 172.15 180.34

St. Dev 104.28 117.05 163.22

St. Dev of ∆ 12.72 12.48 26.07
Autocorrelation 0.9926 0.9972 0.9877
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