A general theory of tax-smoothing

Anastasios G. Karantounias

University of Surrey

Surrey Workshop on Macroeconomics 19-20 May 2022

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question: should we tax today or should we *postpone* taxes and issue debt (≡ *future* taxes)?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Question: should we tax today or should we *postpone* taxes and issue debt (= *future* taxes)?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• What matters for this *trade-off*? the price of government debt.

- Question: should we tax today or should we *postpone* taxes and issue debt (≡ *future* taxes)?
- What matters for this *trade-off*? the price of government debt.
- This paper: Build a *general* theory of optimal fiscal policy around the following "tax-smoothing" principle:

$$\underbrace{\text{Future taxes}}_{\text{MC of debt}} = \underbrace{\Phi \times \text{Marginal Revenue}}_{\text{MB of debt}}$$

(1)

• Optimality condition wrt to (some measure of) debt.

- *LHS:* MC of issuing more debt: costly due to more taxes tomorrow.
- *RHS*: Marginal revenue of new *debt issuance* \times *social value* of relaxing the government budget.

- Question: should we tax today or should we *postpone* taxes and issue debt (= *future* taxes)?
- What matters for this *trade-off*? the price of government debt.
- This paper: Build a *general* theory of optimal fiscal policy around the following *"tax-smoothing"* principle:

$$\underbrace{\text{Future taxes}}_{\text{MC of debt}} \propto \Phi \times \underbrace{\left[p + \frac{\partial p}{\partial b'} \cdot b'\right]}_{\text{MR of debt}} \tag{1}$$

- Optimality condition wrt to (some measure of) debt.
 - *LHS:* MC of issuing more debt: costly due to more taxes tomorrow.
 - *RHS*: Marginal revenue of new *debt issuance* \times *social value* of relaxing the government budget.

- Question: should we tax today or should we *postpone* taxes and issue debt (= *future* taxes)?
- What matters for this *trade-off*? the price of government debt.
- This paper: Build a *general* theory of optimal fiscal policy around the following *"tax-smoothing"* principle:

$$\underbrace{\text{Future taxes}}_{\text{MC of debt}} \propto \Phi \times \underbrace{\left[p + \frac{\partial p}{\partial b'} \cdot b'\right]}_{\text{MR of debt}} \tag{1}$$

- Optimality condition wrt to (some measure of) debt.
 - *LHS:* MC of issuing more debt: costly due to more taxes tomorrow.
 - *RHS*: Marginal revenue of new *debt issuance* \times *social value* of relaxing the government budget.
- *Principle:* Levy more taxes on states/dates if MR of debt is high
- \Rightarrow Tax more tomorrow vs today if it is cheaper to issue debt!

• Market value of the government debt portfolio depends on:

- Market value of the government debt portfolio depends on:
 - 1 Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Market value of the government debt portfolio depends on:
 - 1 Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2 Market structure (*complete* or *incomplete* markets).

- Market value of the government debt portfolio depends on:
 - 1 Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- **2** Market structure (*complete* or *incomplete* markets).
- **3** Timing protocol (*commitment* versus *discretion*).

- Market value of the government debt portfolio depends on:
 - 1 Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).

A D F A 目 F A E F A E F A Q Q

- **2** Market structure (*complete* or *incomplete* markets).
- **3** Timing protocol (*commitment* versus *discretion*).
- What I do: Take *asset prices* seriously.

- Market value of the government debt portfolio depends on:
 - 1 Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).
 - **2** Market structure (*complete* or *incomplete* markets).
 - **3** Timing protocol (*commitment* versus *discretion*).
- What I do: Take *asset prices* seriously.
 - Use a *plausible* model of asset returns \Rightarrow (Generalized) recursive utility.

A D F A 目 F A E F A E F A Q Q

- Market value of the government debt portfolio depends on:
 - 1 Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).
 - **2** Market structure (*complete* or *incomplete* markets).
 - **3** Timing protocol (*commitment* versus *discretion*).
- What I do: Take *asset prices* seriously.
 - Use a *plausible* model of asset returns \Rightarrow (Generalized) recursive utility.

A D F A 目 F A E F A E F A Q Q

• Market structure: consider *complete* or *incomplete* markets.

- Market value of the government debt portfolio depends on:
 - 1 Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).
 - **2** Market structure (*complete* or *incomplete* markets).
 - **3** Timing protocol (*commitment* versus *discretion*).
- What I do: Take *asset prices* seriously.
 - Use a *plausible* model of asset returns \Rightarrow (Generalized) recursive utility.

- Market structure: consider *complete* or *incomplete* markets.
- Timing prot.: *commitment* for the presentation (for *discretion* see paper)

- Market value of the government debt portfolio depends on:
 - 1 Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).
 - **2** Market structure (*complete* or *incomplete* markets).
 - **3** Timing protocol (*commitment* versus *discretion*).
- What I do: Take *asset prices* seriously.
 - Use a *plausible* model of asset returns \Rightarrow (Generalized) recursive utility.

- Market structure: consider *complete* or *incomplete* markets.
- Timing prot.: *commitment* for the presentation (for *discretion* see paper)
- The MR is *activated* with recursive utility.

- Market value of the government debt portfolio depends on:
 - 1 Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).
 - **2** Market structure (*complete* or *incomplete* markets).
 - **3** Timing protocol (*commitment* versus *discretion*).
- What I do: Take *asset prices* seriously.
 - Use a *plausible* model of asset returns \Rightarrow (Generalized) recursive utility.

- Market structure: consider *complete* or *incomplete* markets.
- Timing prot.: *commitment* for the presentation (for *discretion* see paper)
- The MR is *activated* with recursive utility.
- The same principle Taxes = Φ × MR emerges in each environment *‡* tax-smoothing !

- Market value of the government debt portfolio depends on:
 - ① Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).
 - **2** Market structure (*complete* or *incomplete* markets).
 - **3** Timing protocol (*commitment* versus *discretion*).
- What I do: Take *asset prices* seriously.
 - Use a *plausible* model of asset returns \Rightarrow (Generalized) recursive utility.

- Market structure: consider *complete* or *incomplete* markets.
- Timing prot.: *commitment* for the presentation (for *discretion* see paper)
- The MR is *activated* with recursive utility.
- The same principle Taxes = Φ × MR emerges in each environment *‡* tax-smoothing !

• (< Related literature

<ロト < @ ト < 注 ト < 注 ト 注 の < @</p>

Complete markets

• Time-additive utility: Lucas and Stokey (1983)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
 - Keep labor tax essentially $constant \Rightarrow tax$ -smoothing.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
 - Keep labor tax essentially $constant \Rightarrow tax$ -smoothing.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• No drifts.

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
 - Keep labor tax essentially $constant \Rightarrow tax$ -smoothing.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- No drifts.
- No *endogenous* persistence.

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
 - Keep labor tax essentially $constant \Rightarrow tax$ -smoothing.
 - No drifts.
 - No *endogenous* persistence.
- Recursive utility.
 - Taxes are not constant \Rightarrow tax *more* in good times and *less* in bad times.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
 - Keep labor tax essentially $constant \Rightarrow tax$ -smoothing.
 - No drifts.
 - No *endogenous* persistence.
- Recursive utility.
 - Taxes are **not** constant \Rightarrow tax *more* in good times and *less* in bad times.

• *Back-loading* of distortions.

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
 - Keep labor tax essentially $constant \Rightarrow tax$ -smoothing.
 - No drifts.
 - No *endogenous* persistence.
- Recursive utility.
 - Taxes are **not** constant \Rightarrow tax *more* in good times and *less* in bad times.

- *Back-loading* of distortions.
- High *endogenous* persistence.

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
 - Keep labor tax essentially $constant \Rightarrow tax$ -smoothing.
 - No drifts.
 - No *endogenous* persistence.
- Recursive utility.
 - Taxes are not constant \Rightarrow tax *more* in good times and *less* in bad times.

- *Back-loading* of distortions.
- High *endogenous* persistence.

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
 - Keep labor tax essentially $constant \Rightarrow tax$ -smoothing.
 - No drifts.
 - No *endogenous* persistence.
- Recursive utility.
 - Taxes are not constant \Rightarrow tax *more* in good times and *less* in bad times.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

- *Back-loading* of distortions.
- High *endogenous* persistence.

- Time-additive utility: Barro (1979) and Aiyagari et al. (2002)
 - Tax *more* in bad times and *less* in good times.

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
 - Keep labor tax essentially $constant \Rightarrow tax$ -smoothing.
 - No drifts.
 - No *endogenous* persistence.
- Recursive utility.
 - Taxes are not constant \Rightarrow tax *more* in good times and *less* in bad times.

- *Back-loading* of distortions.
- High *endogenous* persistence.

- Time-additive utility: Barro (1979) and Aiyagari et al. (2002)
 - Tax *more* in bad times and *less* in good times.
 - "Averaging" of distortions (taxes are random walks)

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
 - Keep labor tax essentially $constant \Rightarrow tax$ -smoothing.
 - No drifts.
 - No *endogenous* persistence.
- Recursive utility.
 - Taxes are not constant \Rightarrow tax *more* in good times and *less* in bad times.

- *Back-loading* of distortions.
- High *endogenous* persistence.

- Time-additive utility: Barro (1979) and Aiyagari et al. (2002)
 - Tax *more* in bad times and *less* in good times.
 - "Averaging" of distortions (taxes are random walks)
- Recursive utility.

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
 - Keep labor tax essentially $constant \Rightarrow tax$ -smoothing.
 - No drifts.
 - No *endogenous* persistence.
- Recursive utility.
 - Taxes are not constant \Rightarrow tax *more* in good times and *less* in bad times.

- *Back-loading* of distortions.
- High *endogenous* persistence.

- Time-additive utility: Barro (1979) and Aiyagari et al. (2002)
 - Tax *more* in bad times and *less* in good times.
 - "Averaging" of distortions (taxes are random walks)
- Recursive utility.
 - Tax even more in bad times and even less in good times.

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
 - Keep labor tax essentially $constant \Rightarrow tax$ -smoothing.
 - No drifts.
 - No *endogenous* persistence.
- Recursive utility.
 - Taxes are not constant \Rightarrow tax *more* in good times and *less* in bad times.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- *Back-loading* of distortions.
- High *endogenous* persistence.

- Time-additive utility: Barro (1979) and Aiyagari et al. (2002)
 - Tax *more* in bad times and *less* in good times.
 - "Averaging" of distortions (taxes are random walks)
- Recursive utility.
 - Tax even more in bad times and even less in good times.
 - Random-walk results break down (no "averaging").

Economy

• Economy without capital and exogenous and stochastic g_t (TFP shocks can be easily incorporated)

$$c_t(g^t) + g_t = h_t(g^t)$$

Economy

• Economy without capital and exogenous and stochastic g_t (TFP shocks can be easily incorporated)

$$c_t(g^t) + g_t = h_t(g^t)$$

• Two market structures:

① State-contingent debt (complete markets) as in Lucas and Stokey (1983):

$$b_t(g^t) = \underbrace{\tau_t(g^t)w_t(g^t)h_t(g^t) - g_t}_{\text{primary surplus}} + \underbrace{\sum_{g_{t+1}} p_t(g_{t+1}, g^t)b_{t+1}(g^{t+1})}_{q_{t+1}}$$

portfolio of new debt

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Economy

• Economy without capital and exogenous and stochastic g_t (TFP shocks can be easily incorporated)

$$c_t(g^t) + g_t = h_t(g^t)$$

• Two market structures:

① State-contingent debt (complete markets) as in Lucas and Stokey (1983):

$$b_t(g^t) = \underbrace{\tau_t(g^t)w_t(g^t)h_t(g^t) - g_t}_{\text{primary surplus}} + \underbrace{\sum_{g_{t+1}} p_t(g_{t+1}, g^t)b_{t+1}(g^{t+1})}_{\text{portfolio of new debt}}$$

2 Non-contingent debt as in Aiyagari et al. (2002):

$$b_{t-1}(g^{t-1}) = \tau_t(g^t)w_t(g^t)h_t(g^t) - g_t + q_t(g^t)b_t(g^t)$$

Preferences

• General form of recursive utility (Kreps and Porteus (1978)):

$$V_t = u(c_t, 1 - h_t) + \beta \underbrace{H^{-1}(E_t H(V_{t+1}))}_{\text{Certainty equivalent } \mu_t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

- *H* increasing and *concave* \Rightarrow aversion towards risks in V_{t+1} .
- $A(x) \equiv -H''/H'$ coefficient of *absolute* risk aversion.
- Time-additive utility: H(x) = x.

Preferences

• General form of recursive utility (Kreps and Porteus (1978)):

$$V_t = u(c_t, 1 - h_t) + \beta \underbrace{H^{-1}(E_t H(V_{t+1}))}_{\text{Certainty equivalent } \mu_t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

- *H* increasing and *concave* \Rightarrow aversion towards risks in V_{t+1} .
- $A(x) \equiv -H''/H'$ coefficient of *absolute* risk aversion.
- Time-additive utility: H(x) = x.
- Three parametric examples:

• General form of recursive utility (Kreps and Porteus (1978)):

$$V_t = u(c_t, 1 - h_t) + \beta \underbrace{H^{-1}(E_t H(V_{t+1}))}_{\text{Certainty equivalent } \mu_t}$$

- *H* increasing and *concave* \Rightarrow aversion towards risks in V_{t+1} .
- $A(x) \equiv -H''/H'$ coefficient of *absolute* risk aversion.
- Time-additive utility: H(x) = x.
- Three parametric examples:

() Constant absolute risk aversion: $H(x) = \frac{\exp(-Ax)}{-A}, A > 0.$

うして ふゆ く は く は く む く し く

• General form of recursive utility (Kreps and Porteus (1978)):

$$V_t = u(c_t, 1 - h_t) + \beta \underbrace{H^{-1}(E_t H(V_{t+1}))}_{\text{Certainty equivalent } \mu_t}$$

- *H* increasing and *concave* \Rightarrow aversion towards risks in V_{t+1} .
- $A(x) \equiv -H''/H'$ coefficient of *absolute* risk aversion.
- Time-additive utility: H(x) = x.
- Three parametric examples:
 - **()** Constant absolute risk aversion: $H(x) = \frac{\exp(-Ax)}{-A}, A > 0.$
 - **2** Constant relative risk aversion: $H(x) = \frac{x^{1-\alpha}-1}{1-\alpha}, \alpha \neq 1, \alpha, u > 0.$

• General form of recursive utility (Kreps and Porteus (1978)):

$$V_t = u(c_t, 1 - h_t) + \beta \underbrace{H^{-1}(E_t H(V_{t+1}))}_{\text{Certainty equivalent } \mu_t}$$

- *H* increasing and *concave* \Rightarrow aversion towards risks in V_{t+1} .
- $A(x) \equiv -H''/H'$ coefficient of *absolute* risk aversion.
- Time-additive utility: H(x) = x.
- Three parametric examples:
 - **()** Constant *absolute* risk aversion: $H(x) = \frac{\exp(-Ax)}{-A}, A > 0.$
 - **2** Constant relative risk aversion: $H(x) = \frac{x^{1-\alpha}-1}{1-\alpha}, \alpha \neq 1, \alpha, u > 0.$

3 Logarithmic case, $\alpha = 1$: $H(x) = \ln x$.

• General form of recursive utility (Kreps and Porteus (1978)):

$$V_t = u(c_t, 1 - h_t) + \beta \underbrace{H^{-1}(E_t H(V_{t+1}))}_{\text{Certainty equivalent } \mu_t}$$

- *H* increasing and *concave* \Rightarrow aversion towards risks in V_{t+1} .
- $A(x) \equiv -H''/H'$ coefficient of *absolute* risk aversion.
- Time-additive utility: H(x) = x.
- Three parametric examples:
 - **()** Constant absolute risk aversion: $H(x) = \frac{\exp(-Ax)}{-A}, A > 0.$
 - **2** Constant relative risk aversion: $H(x) = \frac{x^{1-\alpha}-1}{1-\alpha}, \alpha \neq 1, \alpha, u > 0.$
 - **3** Logarithmic case, $\alpha = 1$: $H(x) = \ln x$.
- Nests the following: Epstein and Zin (1989), Weil (1990), Hansen and Sargent (2001), Tallarini (2000), Swanson (2018).

うして ふゆ く は く は く む く し く

• *Two* components: Consumption (*short-run*) risk vs Continuation value risk (*long-run*):

$$S_{t+1} = \beta \frac{u_{c,t+1}}{u_{ct}} \underbrace{\frac{H'(V_{t+1})}{H'(\mu_t)}}_{\equiv m_{t+1}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• *Two* components: Consumption (*short-run*) risk vs Continuation value risk (*long-run*):

$$S_{t+1} = \beta \frac{u_{c,t+1}}{u_{ct}} \underbrace{\frac{H'(V_{t+1})}{H'(\mu_t)}}_{\equiv m_{t+1}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Agent dislikes volatility in utility $\Rightarrow V_{t+1} \downarrow \Rightarrow \text{SDF} \uparrow$.

• *Two* components: Consumption (*short-run*) risk vs Continuation value risk (*long-run*):

$$S_{t+1} = \beta \frac{u_{c,t+1}}{u_{ct}} \underbrace{\frac{H'(V_{t+1})}{H'(\mu_t)}}_{\equiv m_{t+1}}$$

- Agent dislikes volatility in utility $\Rightarrow V_{t+1} \downarrow \Rightarrow \text{SDF} \uparrow$.
- *Exponential* CE:

$$m_{t+1} = \frac{\exp(-AV_{t+1})}{E_t \exp(-AV_{t+1})}, E_t m_{t+1} = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Two components: Consumption (short-run) risk vs Continuation value risk (long-run):

$$S_{t+1} = \beta \frac{u_{c,t+1}}{u_{ct}} \underbrace{\frac{H'(V_{t+1})}{H'(\mu_t)}}_{\equiv m_{t+1}}$$

- Agent dislikes volatility in utility $\Rightarrow V_{t+1} \downarrow \Rightarrow \text{SDF} \uparrow$.
- *Exponential* CE:

$$m_{t+1} = \frac{\exp(-AV_{t+1})}{E_t \exp(-AV_{t+1})}, E_t m_{t+1} = 1$$

• Power CE $(\alpha \neq 1)$:

$$m_{t+1} = \left(\frac{V_{t+1}}{\mu_t}\right)^{-\alpha} = \frac{\kappa_{t+1}^{-\alpha}}{1-\alpha}, \quad \text{where} \quad \kappa_{t+1} \equiv \frac{V_{t+1}^{1-\alpha}}{E_t V_{t+1}^{1-\alpha}}, E_t \kappa_{t+1} = 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

• Two components: Consumption (short-run) risk vs Continuation value risk (long-run):

$$S_{t+1} = \beta \frac{u_{c,t+1}}{u_{ct}} \underbrace{\frac{H'(V_{t+1})}{H'(\mu_t)}}_{\equiv m_{t+1}}$$

- Agent dislikes volatility in utility $\Rightarrow V_{t+1} \downarrow \Rightarrow \text{SDF} \uparrow$.
- *Exponential* CE:

$$m_{t+1} = \frac{\exp(-AV_{t+1})}{E_t \exp(-AV_{t+1})}, E_t m_{t+1} = 1$$

• Power CE $(\alpha \neq 1)$:

$$m_{t+1} = \left(\frac{V_{t+1}}{\mu_t}\right)^{-\alpha} = \frac{\kappa_{t+1}^{-\alpha}}{\kappa_{t+1}^{-\alpha}}, \quad \text{where} \quad \kappa_{t+1} \equiv \frac{V_{t+1}^{1-\alpha}}{E_t V_{t+1}^{1-\alpha}}, E_t \kappa_{t+1} = 1$$

• Logarithmic CE:

$$m_{t+1} = \exp\left(-(v_{t+1} - E_t v_{t+1})\right), \quad v_{t+1} \equiv \ln V_{t+1}, E_t \ln m_{t+1} = 1.$$

• Distortionary taxation:

$$\frac{u_{lt}}{u_{ct}} = (1 - \tau_t) w_t$$

• Distortionary taxation:

$$\frac{u_{lt}}{u_{ct}} = (1 - \tau_t)w_t$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

• Optimal policy problem: choose τ to maximize the utility of the representative household at t = 0.

• Distortionary taxation:

$$\frac{u_{lt}}{u_{ct}} = (1 - \tau_t) w_t$$

- Optimal policy problem: choose τ to maximize the utility of the representative household at t = 0.
- Formulate commitment problem recursively as in Kydland and Prescott (1980).

• Distortionary taxation:

$$\frac{u_{lt}}{u_{ct}} = (1 - \tau_t) w_t$$

- Optimal policy problem: choose τ to maximize the utility of the representative household at t = 0.
- Formulate commitment problem recursively as in Kydland and Prescott (1980).
- Important: V_t shows up in the implementability constraints due to recursive utility.

• Distortionary taxation:

$$\frac{u_{lt}}{u_{ct}} = (1 - \tau_t) w_t$$

- Optimal policy problem: choose τ to maximize the utility of the representative household at t = 0.
- Formulate commitment problem recursively as in Kydland and Prescott (1980).
- Important: V_t shows up in the implementability constraints due to recursive utility.
- State variables
 - Complete markets: $z_t \equiv u_{ct}b_t$, debt in MU units.
 - Incomplete markets: $B_t \equiv E_t m_{t+1} u_{c,t+1} \cdot b_t$, debt in average MU units.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

• Distortionary taxation:

$$\frac{u_{lt}}{u_{ct}} = (1 - \tau_t) w_t$$

- Optimal policy problem: choose τ to maximize the utility of the representative household at t = 0.
- Formulate commitment problem recursively as in Kydland and Prescott (1980).
- Important: V_t shows up in the implementability constraints due to recursive utility.
- State variables
 - Complete markets: $z_t \equiv u_{ct}b_t$, debt in MU units.
 - Incomplete markets: $B_t \equiv E_t m_{t+1} u_{c,t+1} \cdot b_t$, debt in average MU units.

うして ふゆ く は く は く む く し く

- Value function with *complete* markets: Complete markets under commitment
- Value function with *incomplete* markets: Incomplete markets under commitment

• Distortionary taxation:

$$\frac{u_{lt}}{u_{ct}} = (1 - \tau_t) w_t$$

- Optimal policy problem: choose τ to maximize the utility of the representative household at t = 0.
- Formulate commitment problem recursively as in Kydland and Prescott (1980).
- Important: V_t shows up in the implementability constraints due to recursive utility.
- State variables
 - Complete markets: $z_t \equiv u_{ct}b_t$, debt in MU units.
 - Incomplete markets: $B_t \equiv E_t m_{t+1} u_{c,t+1} \cdot b_t$, debt in average MU units.
- Value function with *complete* markets: Complete markets under commitment
- Value function with *incomplete* markets: Incomplete markets under commitment
- Φ_t : excess burden (multiplier on implementability constraint) \Rightarrow Captures taxes.

- Let $g_L < g_H$. Planner *insures* ex-ante:
 - sells debt against $g_L \Rightarrow$ to be paid with a surplus when $g' = g_L$

• buys assets against $g_H \Rightarrow$ finances a deficit when $g' = g_H$.

- Let $g_L < g_H$. Planner *insures* ex-ante:
 - sells debt against $g_L \Rightarrow$ to be paid with a surplus when $g' = g_L$
 - buys assets against $g_H \Rightarrow$ finances a deficit when $g' = g_H$.
- How much debt/assets?
 - Expected utility: Make tax rate constant across $g_i, i = L, H$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- Let $g_L < g_H$. Planner *insures* ex-ante:
 - sells debt against $g_L \Rightarrow$ to be paid with a surplus when $g' = g_L$
 - buys assets against $g_H \Rightarrow$ finances a deficit when $g' = g_H$.
- *How much debt/assets?*
 - Expected utility: Make tax rate constant across $g_i, i = L, H$.
 - Recursive utility: Planner over-insures:
 - Sells more debt against g_L and increase taxes when $g' = g_L$
 - Buys more assets against g_H and decrease taxes when $g' = g_H$.

- Let $g_L < g_H$. Planner *insures* ex-ante:
 - sells debt against $g_L \Rightarrow$ to be paid with a surplus when $g' = g_L$
 - buys assets against $g_H \Rightarrow$ finances a deficit when $g' = g_H$.
- *How much debt/assets?*
 - Expected utility: Make tax rate constant across g_i , i = L, H.
 - Recursive utility: Planner over-insures:
 - Sells more debt against g_L and increase taxes when $g' = g_L$
 - Buys more assets against g_H and decrease taxes when $g' = g_H$.
 - Why? $Debt_L \uparrow \Rightarrow V_L \downarrow \Rightarrow SDF_L \uparrow$: price of claims sold \uparrow .
 - Tax more at g_L since it becomes cheaper to issue debt against g_L .
 - Tax less at g_H because assets against g_H become more profitable $(SDF_H \downarrow)$.

• Optimality condition wrt $z_{t+1} \equiv u_{c,t+1}b_{t+1}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

• Time-additive utility: Lucas and Stokey (1983)

$$\underbrace{\Phi_{t+1}}_{\mathrm{MC}} = \underbrace{\Phi_t}_{\mathrm{MB}} \cdot 1, \forall t, s^t$$

• MR part trivial \Rightarrow keep distortions constant over states and dates ("tax-smoothing").

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Recursive utility:

$$\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Recursive utility:

$$\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}$$

• η_{t+1} : relative debt in MU units adjusted by $A(x) \equiv -A''/A'$.

$$\eta_{t+1} \equiv \underbrace{A(V_{t+1})z_{t+1}}_{\text{"debt"}} - A(\mu_t) \quad \overbrace{E_t m_{t+1} z_{t+1}}^{\text{value of portfolio}}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

• Recursive utility:

$$\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}$$

• η_{t+1} : relative debt in MU units adjusted by $A(x) \equiv -A''/A'$.

$$\eta_{t+1} \equiv \underbrace{A(V_{t+1})z_{t+1}}_{\text{"debt"}} - A(\mu_t) \quad \overbrace{E_t m_{t+1} z_{t+1}}^{\text{value of portfolio}}$$

• $\eta_{t+1} \equiv 0$ for time-additive utility (or for the deterministic case).

• LoM in terms of inverse excess burden of taxation

$$\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}$$

- Tax more tomorrow vs today $(\Phi_{t+1}(g') > \Phi_t)$ when issue relatively more debt $(\eta_{t+1}(g') > 0)$.
- Tax less tomorrow vs today $(\Phi_{t+1}(g') < \Phi_t)$ when issue relatively less debt $(\eta_{t+1}(g') < 0)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

• LoM in terms of inverse excess burden of taxation

$$\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}$$

- Tax more tomorrow vs today $(\Phi_{t+1}(g') > \Phi_t)$ when issue relatively more debt $(\eta_{t+1}(g') > 0)$.
- Tax less tomorrow vs today $(\Phi_{t+1}(g') < \Phi_t)$ when issue relatively less debt $(\eta_{t+1}(g') < 0)$.
- Expect $\eta_{t+1}(g_L) > 0 > \eta_{t+1}(g_H)$ due to fiscal hedging (issue more debt against good times) $\Rightarrow \Phi_{t+1}(g_L) > \Phi_t > \Phi_{t+1}(g_H)$.

うして ふゆ く は く は く む く し く

• LoM in terms of inverse excess burden of taxation

$$\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}$$

- Tax more tomorrow vs today $(\Phi_{t+1}(g') > \Phi_t)$ when issue relatively more debt $(\eta_{t+1}(g') > 0)$.
- Tax less tomorrow vs today $(\Phi_{t+1}(g') < \Phi_t)$ when issue relatively less debt $(\eta_{t+1}(g') < 0)$.
- Expect $\eta_{t+1}(g_L) > 0 > \eta_{t+1}(g_H)$ due to fiscal hedging (issue more debt against good times) $\Rightarrow \Phi_{t+1}(g_L) > \Phi_t > \Phi_{t+1}(g_H)$.
- ⇒ Tax more in good times and less in bad times ⇒ amplify Lucas and Stokey (1983).

• LoM in terms of inverse excess burden of taxation

$$\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}$$

- Tax more tomorrow vs today $(\Phi_{t+1}(g') > \Phi_t)$ when issue relatively more debt $(\eta_{t+1}(g') > 0)$.
- Tax less tomorrow vs today $(\Phi_{t+1}(g') < \Phi_t)$ when issue relatively less debt $(\eta_{t+1}(g') < 0)$.
- Expect $\eta_{t+1}(g_L) > 0 > \eta_{t+1}(g_H)$ due to fiscal hedging (issue more debt against good times) $\Rightarrow \Phi_{t+1}(g_L) > \Phi_t > \Phi_{t+1}(g_H)$.
- ⇒ Tax more in good times and less in bad times ⇒ amplify Lucas and Stokey (1983).
- \Rightarrow run larger surpluses in good times and larger deficits in bad times.

• LoM in terms of inverse excess burden of taxation

$$\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}$$

- Tax more tomorrow vs today $(\Phi_{t+1}(g') > \Phi_t)$ when issue relatively more debt $(\eta_{t+1}(g') > 0)$.
- Tax less tomorrow vs today $(\Phi_{t+1}(g') < \Phi_t)$ when issue relatively less debt $(\eta_{t+1}(g') < 0)$.
- Expect $\eta_{t+1}(g_L) > 0 > \eta_{t+1}(g_H)$ due to fiscal hedging (issue more debt against good times) $\Rightarrow \Phi_{t+1}(g_L) > \Phi_t > \Phi_{t+1}(g_H)$.
- ⇒ Tax more in good times and less in bad times ⇒ amplify Lucas and Stokey (1983).
- \Rightarrow run larger surpluses in good times and larger deficits in bad times.

^{• (•} parametric examples, persistence and drifts

• LoM in terms of inverse excess burden of taxation

$$\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}$$

- Tax more tomorrow vs today $(\Phi_{t+1}(g') > \Phi_t)$ when issue relatively more debt $(\eta_{t+1}(g') > 0)$.
- Tax less tomorrow vs today $(\Phi_{t+1}(g') < \Phi_t)$ when issue relatively less debt $(\eta_{t+1}(g') < 0)$.
- Expect $\eta_{t+1}(g_L) > 0 > \eta_{t+1}(g_H)$ due to fiscal hedging (issue more debt against good times) $\Rightarrow \Phi_{t+1}(g_L) > \Phi_t > \Phi_{t+1}(g_H)$.
- ⇒ Tax more in good times and less in bad times ⇒ amplify Lucas and Stokey (1983).
- \Rightarrow run larger surpluses in good times and larger deficits in bad times.

A parametric examples, persistence and drifts

• Debt *non-contingent* \Rightarrow less room for manipulation of SDF?

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

• Debt *non-contingent* \Rightarrow less room for manipulation of SDF?

• Let $g_L < g_H$. Planner issues non-contingent debt:

- Debt *non-contingent* \Rightarrow less room for manipulation of SDF?
- Let $g_L < g_H$. Planner issues non-contingent debt:
 - In good times, $g' = g_L$, the planner will tax *less* to repay debt and finance g_L .

- Debt *non-contingent* \Rightarrow less room for manipulation of SDF?
- Let $g_L < g_H$. Planner issues non-contingent debt:
 - In good times, $g' = g_L$, the planner will tax *less* to repay debt and finance g_L .
 - In bad times, $g' = g_H$, the planner will have to tax *more* to repay debt and finance g_H .

- Debt *non-contingent* \Rightarrow less room for manipulation of SDF?
- Let $g_L < g_H$. Planner issues non-contingent debt:
 - In good times, $g' = g_L$, the planner will tax *less* to repay debt and finance g_L .
 - In bad times, $g' = g_H$, the planner will have to tax *more* to repay debt and finance g_H .
- How much non-contingent debt does the planner issue?
 - Expected utility: Make tax rate on average constant across g_i , i = L, H.

What happens with incomplete markets?

- Debt non-contingent \Rightarrow less room for manipulation of SDF?
- Let $g_L < g_H$. Planner issues non-contingent debt:
 - In good times, $g' = g_L$, the planner will tax *less* to repay debt and finance g_L .
 - In bad times, $g' = g_H$, the planner will have to tax *more* to repay debt and finance g_H .
- How much non-contingent debt does the planner issue?
 - Expected utility: Make tax rate on average constant across g_i , i = L, H.
 - Recursive utility:
 - Is there a *counter-acting* force (tax more in good times and less in bad times)? NO.

A D F A 目 F A E F A E F A Q Q

What happens with incomplete markets?

- Debt *non-contingent* \Rightarrow less room for manipulation of SDF?
- Let $g_L < g_H$. Planner issues non-contingent debt:
 - In good times, $g' = g_L$, the planner will tax *less* to repay debt and finance g_L .
 - In bad times, $g' = g_H$, the planner will have to tax *more* to repay debt and finance g_H .
- How much non-contingent debt does the planner issue?
 - Expected utility: Make tax rate on average constant across g_i , i = L, H.
 - Recursive utility:
 - Is there a *counter-acting* force (tax more in good times and less in bad times)? NO.
 - Price manipulation: Use continuation values to make the *average* SDF (inverse of interest rate) large.

What happens with incomplete markets?

- Debt *non-contingent* \Rightarrow less room for manipulation of SDF?
- Let $g_L < g_H$. Planner issues non-contingent debt:
 - In good times, $g' = g_L$, the planner will tax *less* to repay debt and finance g_L .
 - In bad times, $g' = g_H$, the planner will have to tax *more* to repay debt and finance g_H .
- How much non-contingent debt does the planner issue?
 - Expected utility: Make tax rate on average constant across $g_i, i = L, H$.
 - Recursive utility:
 - Is there a *counter-acting* force (tax more in good times and less in bad times)? NO.
 - Price manipulation: Use continuation values to make the *average* SDF (inverse of interest rate) large.
 - Result: put more tax distortions on events with high $u_c \Rightarrow \tan even$ more bad times with high u_c .

• Optimality condition wrt to $B_t \equiv E_t m_{t+1} u_{c,t+1} b_t$:

• Time-additive utility: (AMSS 2002)

$$E_t \mathbf{x}_{t+1} \Phi_{t+1} = \Phi_t, \quad \mathbf{x}_{t+1} \equiv \frac{u_{c,t+1}}{E_t u_{c,t+1}}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

 \Rightarrow keep distortions on "average" constant (Barro (1979)).

• Recursive utility: LoM for the inverse average excess burden

$$\frac{1}{E_t n_{t+1} \Phi_{t+1}} = \frac{1}{\Phi_t} - \frac{E_{t-1} n_t \Phi_t}{\Phi_t} \cdot \xi_t \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c,t+1}}{E_t m_{t+1} u_{c,t+1}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

where ξ_t is the *relative* marginal utility adjusted by A(x)

$$\xi_t \equiv A(V_t)u_{ct} - A(\mu_{t-1})E_{t-1}m_t u_{ct}$$

• MR: depends on ξ_t times non-contingent debt b_{t-1} .

• Recursive utility: LoM for the inverse average excess burden

$$\frac{1}{E_t n_{t+1} \Phi_{t+1}} = \frac{1}{\Phi_t} - \frac{E_{t-1} n_t \Phi_t}{\Phi_t} \cdot \xi_t \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c,t+1}}{E_t m_{t+1} u_{c,t+1}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where ξ_t is the *relative* marginal utility adjusted by A(x)

$$\xi_t \equiv A(V_t)u_{ct} - A(\mu_{t-1})E_{t-1}m_t u_{ct}$$

- MR: depends on ξ_t times non-contingent debt b_{t-1} .
- $\xi_t \equiv 0$ for the time-additive case.

• Recursive utility: LoM for the inverse average excess burden

$$\frac{1}{E_t n_{t+1} \Phi_{t+1}} = \frac{1}{\Phi_t} - \frac{E_{t-1} n_t \Phi_t}{\Phi_t} \cdot \xi_t \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c,t+1}}{E_t m_{t+1} u_{c,t+1}}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

where ξ_t is the *relative* marginal utility adjusted by A(x)

$$\boldsymbol{\xi_t} \equiv A(V_t)u_{ct} - A(\mu_{t-1})E_{t-1}m_t u_{ct}$$

- MR: depends on ξ_t times non-contingent debt b_{t-1} .
- $\xi_t \equiv 0$ for the time-additive case.
- \Rightarrow Average tax distortions *not constant* anymore!

• Recursive utility: LoM for the inverse average excess burden

$$\frac{1}{E_t n_{t+1} \Phi_{t+1}} = \frac{1}{\Phi_t} - \frac{E_{t-1} n_t \Phi_t}{\Phi_t} \cdot \xi_t \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c,t+1}}{E_t m_{t+1} u_{c,t+1}}$$

where ξ_t is the *relative* marginal utility adjusted by A(x)

$$\boldsymbol{\xi_t} \equiv A(V_t)u_{ct} - A(\mu_{t-1})E_{t-1}m_t u_{ct}$$

- MR: depends on ξ_t times non-contingent debt b_{t-1} .
- $\xi_t \equiv 0$ for the time-additive case.
- \Rightarrow Average tax distortions *not constant* anymore!
- u_c high in bad times \Rightarrow expect $\xi_t(g_H) > 0 > \xi_t(g_L)$. Thus, if $b_{t-1} > 0$
 - $E_t n_{t+1} \Phi_{t+1} > \Phi_t$ if $g_t = g_H$.
 - $E_t n_{t+1} \Phi_{t+1} < \Phi_t$ if $g_t = g_L$.

• Recursive utility: LoM for the inverse average excess burden

$$\frac{1}{E_t n_{t+1} \Phi_{t+1}} = \frac{1}{\Phi_t} - \frac{E_{t-1} n_t \Phi_t}{\Phi_t} \cdot \xi_t \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c,t+1}}{E_t m_{t+1} u_{c,t+1}}$$

where ξ_t is the *relative* marginal utility adjusted by A(x)

$$\xi_t \equiv A(V_t)u_{ct} - A(\mu_{t-1})E_{t-1}m_t u_{ct}$$

- MR: depends on ξ_t times non-contingent debt b_{t-1} .
- $\xi_t \equiv 0$ for the time-additive case.
- \Rightarrow Average tax distortions *not constant* anymore!
- u_c high in bad times \Rightarrow expect $\xi_t(g_H) > 0 > \xi_t(g_L)$. Thus, if $b_{t-1} > 0$
 - $E_t n_{t+1} \Phi_{t+1} > \Phi_t$ if $g_t = g_H$.
 - $E_t n_{t+1} \Phi_{t+1} < \Phi_t$ if $g_t = g_L$.
- Tax more in bad times and less in good times \Rightarrow larger weight on u_c in bad times ($q_t \uparrow$) \Rightarrow amplify Aiyagari et al. (2002).

● (< optimal tax rate

Concluding remarks

- Minimization of welfare distortions \Rightarrow tax more events against which it is *cheap* to issue debt (Taxes= $\Phi \times MR$).
- This insight holds in *all* environments ⇒ provides a *general principle* of taxation.
- This does not mean taxes are (on average or not) smooth!
- Taking asset prices seriously \Rightarrow *amplification* of standard taxation and debt issuance motives.

A D F A 目 F A E F A E F A Q Q

THANK YOU!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Related literature

Table: Optimal fiscal policy with time-additive utility.

	Commitment	Discretion
Complete	Lucas and Stokey (1983)	Krusell et al. (2004) ,
Markets	Chari et al. (1994), Zhu (1992)	Occhino (2012)
		Debortoli and Nunes (2013)
Incomplete	Aiyagari et al. (2002), Farhi (2010)	Martin (2009)
Markets	Bhandari et al. (2017)	Karantounias (2017)

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Related literature

Table: Optimal fiscal policy with time-additive utility.

	Commitment	Discretion
Complete	Lucas and Stokey (1983)	Krusell et al. (2004) ,
Markets	Chari et al. (1994), Zhu (1992)	Occhino (2012)
		Debortoli and Nunes (2013)
Incomplete	Aiyagari et al. (2002), Farhi (2010)	Martin (2009)
Markets	Bhandari et al. (2017)	Karantounias (2017)

Table: Optimal fiscal policy with recursive utility.

	Commitment	Discretion
Complete	Karantounias (2018) : EZW utility	This paper
Markets	This paper: more general utility	
Incomplete	This paper	This paper
Markets		

Value function with complete markets under commitment

•
$$z \equiv u_c \cdot b$$
.

$$V(z,g) = \max_{c \ge 0, h \in [0,1], z'_{g'} \in Z(g')} u(c,1-h) + \beta H^{-1} \Big(\sum_{g'} \pi(g'|g) H \big(V(z_{g'},g') \big) \Big)$$

subject to

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

c+g=h

Value function with complete markets under commitment

$$V(z,g) = \max_{c \ge 0, h \in [0,1], z'_{g'} \in Z(g')} u(c,1-h) + \beta H^{-1} \Big(\sum_{g'} \pi(g'|g) H \big(V(z_{g'},g') \big) \Big)$$

subject to

• $z \equiv u_c \cdot b$.

• Value functions in the constraint due to the SDF:

$$m'_{g'} \equiv \frac{H'(V(z'_{g'}, g'))}{H'(\mu)}, \text{ and } \mu \equiv H^{-1}\Big(\sum_{g'} \pi(g'|g) H\big(V(z'_{g'}, g')\big)\Big).$$

•
$$m'_{g'} \equiv 1$$
 for time-additive utility.
(Return

Value function with incomplete markets under commitment

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

• State variable
$$B_t \equiv E_t m_{t+1} u_{c,t+1} \cdot b_t$$
.

Value function with incomplete markets under commitment

• State variable
$$B_t \equiv E_t m_{t+1} u_{c,t+1} \cdot b_t$$
.

• Commit to *average* marginal utility: promises across states *g*.

$$W(B_{-},g_{-}) = \max_{c_g \ge 0, h_g \in [0,1], B_g} H^{-1} \Big(\sum_g \pi(g|g_{-}) H \big(u(c_g, 1-h_g) + \beta W(B_g,g) \big) \Big)$$

subject to

$$\frac{u_c(c_g, 1 - h_g)}{\sum_g \pi(g|g_-)m_g u_c(c_g, 1 - h_g)} B_- = \underbrace{u_c c_g - u_l h_g}_{\text{surplus}} + \underbrace{\beta B_g}_{\text{new debt}}, \forall g$$
$$c_g + g = h_g, \forall g$$
$$\underline{B}_g \leq B_g \leq \overline{B}_g, \forall g.$$

Value function with incomplete markets under commitment

• State variable
$$B_t \equiv E_t m_{t+1} u_{c,t+1} \cdot b_t$$
.

• Commit to *average* marginal utility: promises across states g.

$$W(B_{-},g_{-}) = \max_{c_g \ge 0, h_g \in [0,1], B_g} H^{-1} \Big(\sum_g \pi(g|g_{-}) H \big(u(c_g, 1-h_g) + \beta W(B_g,g) \big) \Big)$$

subject to

$$\frac{u_c(c_g, 1 - h_g)}{\sum_g \pi(g|g_-)m_g u_c(c_g, 1 - h_g)} B_- = \underbrace{u_c c_g - u_l h_g}_{\text{surplus}} + \underbrace{\beta B_g}_{\text{new debt}}, \forall g$$
$$c_g + g = h_g, \forall g$$
$$\underline{B}_g \leq B_g \leq \overline{B}_g, \forall g.$$

• Value functions W in m_g :

$$m_g = \frac{H'(u(c_g, 1 - h_g) + \beta W(B_g, g))}{H'(H^{-1}(\sum_g \pi(g|g_-)H(u(c_g, 1 - h_g) + \beta W(B_g, g)))))}, \forall g.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

• Exponential CE:

$$\eta_{t+1} = A \cdot [z_{t+1} - E_t m_{t+1} z_{t+1}] \Rightarrow E_t m_{t+1} \eta_{t+1} = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $\Rightarrow 1/\Phi_t \text{ martingale wrt } \pi_t \cdot M_t$

• Exponential CE:

$$\eta_{t+1} = A \cdot [z_{t+1} - E_t m_{t+1} z_{t+1}] \Rightarrow E_t m_{t+1} \eta_{t+1} = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $\Rightarrow 1/\Phi_t$ martingale wrt $\pi_t \cdot M_t \Rightarrow \Phi_t$ submartingale wrt $\pi_t \cdot M_t$, $E_t m_{t+1} \Phi_{t+1} \ge \Phi_t$.

• Exponential CE:

$$\eta_{t+1} = A \cdot [z_{t+1} - E_t m_{t+1} z_{t+1}] \Rightarrow E_t m_{t+1} \eta_{t+1} = 0$$

- $\Rightarrow 1/\Phi_t$ martingale wrt $\pi_t \cdot M_t \Rightarrow \Phi_t$ submartingale wrt $\pi_t \cdot M_t$, $E_t m_{t+1} \Phi_{t+1} \ge \Phi_t$.
- Drift wrt *physical* measure?

$$E_t \Phi_{t+1} \ge \Phi_t - Cov_t(\boldsymbol{m_{t+1}}, \Phi_{t+1})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

 \Rightarrow if $Cov_t < 0 \Rightarrow$ positive drift wrt π_t .

• Exponential CE:

$$\eta_{t+1} = A \cdot [z_{t+1} - E_t m_{t+1} z_{t+1}] \Rightarrow E_t m_{t+1} \eta_{t+1} = 0$$

- $\Rightarrow 1/\Phi_t$ martingale wrt $\pi_t \cdot M_t \Rightarrow \Phi_t$ submartingale wrt $\pi_t \cdot M_t$, $E_t m_{t+1} \Phi_{t+1} \ge \Phi_t$.
- Drift wrt *physical* measure?

$$E_t \Phi_{t+1} \ge \Phi_t - Cov_t(\boldsymbol{m_{t+1}}, \Phi_{t+1})$$

 \Rightarrow if $Cov_t < 0 \Rightarrow$ positive drift wrt π_t .

• Power CE, $\alpha \neq 1$

$$\eta_{t+1} = \alpha \cdot [V_{t+1}^{-1} z_{t+1} - E_t \kappa_{t+1} V_{t+1}^{-1} z_{t+1}] \Rightarrow E_t \kappa_{t+1} \eta_{t+1} = 0$$

• $\Rightarrow 1/\Phi_t$ martingale wrt $\pi_t \cdot K_t \Rightarrow$ positive drift wrt $\pi_t \cdot K_t$.

• Exponential CE:

$$\eta_{t+1} = A \cdot [z_{t+1} - E_t m_{t+1} z_{t+1}] \Rightarrow E_t m_{t+1} \eta_{t+1} = 0$$

- $\Rightarrow 1/\Phi_t$ martingale wrt $\pi_t \cdot M_t \Rightarrow \Phi_t$ submartingale wrt $\pi_t \cdot M_t$, $E_t m_{t+1} \Phi_{t+1} \ge \Phi_t$.
- Drift wrt *physical* measure?

$$E_t \Phi_{t+1} \ge \Phi_t - Cov_t(\boldsymbol{m_{t+1}}, \Phi_{t+1})$$

 \Rightarrow if $Cov_t < 0 \Rightarrow$ positive drift wrt π_t .

• Power CE, $\alpha \neq 1$

$$\eta_{t+1} = \alpha \cdot [V_{t+1}^{-1} z_{t+1} - E_t \kappa_{t+1} V_{t+1}^{-1} z_{t+1}] \Rightarrow E_t \kappa_{t+1} \eta_{t+1} = 0$$

- $\Rightarrow 1/\Phi_t$ martingale wrt $\pi_t \cdot K_t \Rightarrow$ positive drift wrt $\pi_t \cdot K_t$.
- Logarithmic CE:

$$\eta_{t+1} = V_{t+1}^{-1} z_{t+1} - E_t V_{t+1}^{-1} z_{t+1}$$

A D F A 目 F A E F A E F A Q Q

• $\Rightarrow 1/\Phi_t$ martingale wrt $\pi_t \Rightarrow positive$ drift wrt π_t .

◀ Return

Optimal tax rate I

• Complete markets and commitment, $t \geq 1$

$$\tau_t = \frac{\Phi_t(\epsilon_{cc,t} + \epsilon_{ch,t} + \epsilon_{hh,t} + \epsilon_{hc,t})}{1 + \Phi_t(1 + \epsilon_{hh,t} + \epsilon_{hc,t})}$$

where $\epsilon_{cc} \equiv -u_{cc}c/u_c$, $\epsilon_{ch} \equiv u_{cl}h/u_c$ and $\epsilon_{hh} \equiv -u_{ll}h/u_l$, $\epsilon_{hc} \equiv u_{cl}c/u_l$, the respective own and cross elasticities.

Optimal tax rate I

• Complete markets and commitment, $t \geq 1$

$$\tau_t = \frac{\Phi_t(\epsilon_{cc,t} + \epsilon_{ch,t} + \epsilon_{hh,t} + \epsilon_{hc,t})}{1 + \Phi_t(1 + \epsilon_{hh,t} + \epsilon_{hc,t})}$$

where $\epsilon_{cc} \equiv -u_{cc}c/u_c$, $\epsilon_{ch} \equiv u_{cl}h/u_c$ and $\epsilon_{hh} \equiv -u_{ll}h/u_l$, $\epsilon_{hc} \equiv u_{cl}c/u_l$, the respective own and cross elasticities.

• Assume a utility function with *constant* elasticities

$$U(c, 1-h) = \frac{c^{1-\rho} - 1}{1-\rho} - a_h \frac{h^{1+\phi_h}}{1+\phi_h}$$

• $\Rightarrow \tau_t$ moves 1-1 with Φ_t , with law of motion

$$\frac{1}{\tau_{t+1}} = \frac{1}{\tau_t} - \frac{1}{\rho + \phi_h} \eta_{t+1}$$

うしゃ ふゆ きょう きょう うくの

Optimal tax rate II: Incomplete markets and commitment

• Power in c and h (constant Frisch): The optimal tax rate with recursive utility is

$$\tau_t = \frac{\Phi_t(\rho + \phi_h) - \rho \left[\Phi_t - E_{t-1} n_t \Phi_t \right] \frac{b_{t-1}}{c_t}}{1 - (E_{t-1} n_t \Phi_t) \xi_t b_{t-1} + \Phi_t (1 + \phi_h)}$$

• The respective tax rate for the *time-additive* case of Aiyagari et al. (2002) is

$$\tau_t = \frac{\Phi_t(\rho + \phi_h) - \rho \left[\Phi_t - \Phi_{t-1}\right] \frac{b_{t-1}}{c_t}}{1 + \Phi_t(1 + \phi_h)}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

• if $\xi_t > 0$ (marginal utility relatively high) \Rightarrow tax rate \uparrow .

Excess burden without commitment and complete markets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Value functions: • Complete markets- MPE

Excess burden <u>without</u> commitment and complete markets

- Value functions: Complete markets- MPE
- Excess burden with time-additive utility:

$$\Phi_{t+1} = \Phi_t \cdot \underbrace{[1 + \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial \mathcal{C}}{\partial B_{t+1}} \cdot B_{t+1}]}_{\propto \Phi \times MR}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Excess burden <u>without</u> commitment and complete markets

- Value functions: Complete markets- MPE
- Excess burden with time-additive utility:

$$\Phi_{t+1} = \Phi_t \cdot \underbrace{\left[1 + \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial \mathcal{C}}{\partial B_{t+1}} \cdot B_{t+1}\right]}_{\propto \Phi \times MR}.$$

• Excess burden with recursive utility:

$$\frac{1}{\Phi_{t+1}} = [1 + \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial \mathcal{C}}{\partial b_{t+1}} \cdot b_{t+1}]^{-1} \left[\frac{1}{\Phi_t} - \frac{\nu_{t+1}}{\mu_{t+1}}\right]$$

• Relative "debt" position:

$$\nu_{t+1} \equiv A(V_{t+1})u_{c,t+1}b_{t+1} - A(\mu_t) \cdot E_t m_{t+1}u_{c,t+1}b_{t+1}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Excess burden <u>without</u> commitment and complete markets

- Value functions: Complete markets- MPE
- Excess burden with time-additive utility:

$$\Phi_{t+1} = \Phi_t \cdot \underbrace{\left[1 + \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial \mathcal{C}}{\partial B_{t+1}} \cdot B_{t+1}\right]}_{\propto \Phi \times MR}.$$

• Excess burden with recursive utility:

$$\frac{1}{\Phi_{t+1}} = [1 + \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial \mathcal{C}}{\partial b_{t+1}} \cdot b_{t+1}]^{-1} \left[\frac{1}{\Phi_t} - \nu_{t+1}\right]$$

• Relative "debt" position:

$$\nu_{t+1} \equiv A(V_{t+1})u_{c,t+1}b_{t+1} - A(\mu_t) \cdot E_t m_{t+1}u_{c,t+1}b_{t+1}.$$

- u'_c channel: tax more tomorrow vs today if you issue debt.
- V_{t+1} : tax more (less) if debt is relatively high (low).
- \Rightarrow the two incentives may *oppose* each other.

Excess burden without commitment and incomplete markets

- Value function: Incomplete markets MPE
- *Excess burden* with *time-additive* utility:

$$E_{t}x_{t+1}\Phi_{t+1} = \Phi_{t} \cdot \left[1 + E_{t}x_{t+1} \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial \mathcal{C}}{\partial B_{t+1}} \cdot B_{t+1}\right]$$

where $x_{t+1} \equiv u_{c,t+1}/E_t u_{c,t+1}$

Excess burden <u>without</u> commitment and incomplete markets

- Value function: Incomplete markets MPE
- *Excess burden* with *time-additive* utility:

$$E_t x_{t+1} \Phi_{t+1} = \Phi_t \cdot \left[1 + E_t x_{t+1} \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial \mathcal{C}}{\partial B_{t+1}} \cdot B_{t+1} \right]$$

where $x_{t+1} \equiv u_{c,t+1}/E_t u_{c,t+1}$

• *Excess burden* with recursive utility:

$$E_t n_{t+1} \Phi_{t+1} (1 - \xi_{t+1} b_t \Phi_t) = \Phi_t \left[1 + E_t n_{t+1} \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \mathcal{C}_{b,t+1} \cdot b_t \right]$$

• with
$$\xi_{t+1} \equiv A(V_{t+1})u_{c,t+1} - A(\mu_t)E_t m_{t+1}u_{c,t+1}$$
.

• "Averaging" with respect to n_{t+1} measure.

• Continuation value channel depends on *relative* marginal utility ξ_{t+1} .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

Value function with complete markets and <u>no</u> commitment

• Markov-perfect equilibrium: *state variable* (*b*, *g*).

$$V(b,g) = \max_{c,h,b'_{g'}} u(c,1-h) + \beta H^{-1} \left(\sum_{g'} \pi(g'|g) H(V(b'_{g'},g')) \right)$$

subject to

$$u_{c}b = u_{c}c - u_{l}h + \beta \underbrace{\sum_{g'} \pi(g'|g)m'_{g'}u_{c}(\mathcal{C}(b'_{g'},g'), 1 - \mathcal{H}(b'_{g'},g'))b'_{g'}}_{\mathcal{L}(b)}$$

Recursive utility + Markov-perfect

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

$$c+g=h$$

• where
$$m'_{g'} \equiv \frac{H'(V(b'_{g'}, g'))}{H'(\mu)}$$

• MPE:
$$c = C, h = \mathcal{H}$$
.

Return

Value function with incomplete markets and <u>no</u> commitment

• State variable is *non-contingent* debt: (b_{-}, g) .

$$V(b_{-},g) = \max_{c \ge 0, h \in [0,1], b \in \mathcal{B}} u(c,1-h) + \beta H^{-1} \left(\sum_{g'} \pi(g'|g) H(V(b,g')) \right)$$

subject to

$$u_{c}(c, 1-h)b_{-} = u_{c}c - u_{l}h + \beta \underbrace{\left(\sum_{g'} \pi(g'|g)m'_{g'}u_{c}(\mathcal{C}(b, g'), 1 - \mathcal{H}(b, g'))\right)}_{log} \cdot b$$

$$c + g = h$$

where
$$m'_{g'} \equiv \frac{H'(V(b,g'))}{H'(H^{-1}(\sum_{g'} \pi(g'|g)H(V(b,g'))))}$$
.

• MPE:
$$c = C, h = \mathcal{H}$$
.

Numerical exercises- Karantounias (2018)

Calibration:

• Utility function: $\rho = 1 < \gamma$

$$v_t = \ln c_t - a_h \frac{h_t^{1+\phi_h}}{1+\phi_h} + \frac{\beta}{(1-\beta)(1-\gamma)} \ln E_t \exp(((1-\beta)(1-\gamma)v_{t+1}))$$

• Parameters:
$$(\beta, \phi_h, \gamma) = (0.96, 1, 10)$$

- Shocks
 - i.i.d. shocks: mean 20% and std 2%.
 - Chari et al. (1994) shocks.

Computational issues:

- Endogenous state space.
- Lack of the contraction property due to the value function in the constraint.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Non-convexities.

Instructive sample path

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Random sample paths

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Volatility and back-loading of distortions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

- Positive drift.
- Increasing volatility over time, "fanning-out" of the distribution.

Stationary moments

Tax rate in %	i.i.d.	CCK shocks	$2\times\mathbf{std}(\mathbf{g})$
Mean	30.86	30.49	31.26
St. Dev	4.94	5.52	7.76
St. Dev of Δ	0.17	0.41	0.90
Autocorrelation	0.9994	0.9972	0.9932

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Enormous volatility of the tax rate and therefore of debt .

• Chari et al. (1994): volatility of tax rate of 5-15 basis points.

Stationary distribution: debt

debt/output in %	i.i.d.	CCK shocks	$2\times\mathbf{std}(\mathbf{g})$
Mean	181.97	172.15	180.34
St. Dev	104.28	117.05	163.22
St. Dev of Δ Autocorrelation	$\begin{array}{c} 12.72 \\ 0.9926 \end{array}$	$\begin{array}{c} 12.48\\ 0.9972\end{array}$	$\frac{26.07}{0.9877}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◀ Return

- Aiyagari, S. Rao, Albert Marcet, Thomas J. Sargent, and Juha Seppala. 2002. Optimal Taxation without State-Contingent Debt. *Journal of Political Economy* 110 (6):1220–1254.
- Barro, Robert J. 1979. On the Determination of the Public Debt. *Journal* of *Political Economy* 87 (5):940–71.
- Bhandari, Anmol, David Evans, Mikhail Golosov, and Thomas J. Sargent. 2017. Fiscal Policy and Debt Management with Incomplete Markets. *Quarterly Journal of Economics* 132 (1):617–663.
- Chari, V.V., Lawrence J. Christiano, and Patrick J. Kehoe. 1994. Optimal Fiscal Policy in a Business Cycle Model. *Journal of Political Economy* 102 (4):617–652.
- Debortoli, Davide and Ricardo Nunes. 2013. Lack of commitment and the level of debt. Journal of the European Economic Association 11 (5):1053–1078.
- Epstein, Larry G. and Stanley E. Zin. 1989. Substitution, Risk Aversion and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework. *Econometrica* 57 (4):937–969.
- Farhi, Emmanuel. 2010. Capital Taxation and Ownership when Markets are Incomplete. Journal of Political Economy 118 (5):908–948.
- Hansen, Lars Peter and Thomas J. Sargent. 2001. Robust Control and
- Model Uncertainty. American Economic Review 91 (2):60–66.
- Karantounias, Anastasios G. 2017. Greed versus fear: optimal
- time consistent terration with default Federal December Park of Atlanta