A general theory of tax-smoothing

Anastasios G. Karantounias

University of Surrey

Surrey Workshop on Macroeconomics
19-20 May 2022

The basic idea

- Question: should we tax today or should we postpone taxes and issue debt (\equiv future taxes)?

The basic idea

- Question: should we tax today or should we postpone taxes and issue debt (\equiv future taxes)?
- What matters for this trade-off? the price of government debt.

The basic idea

- Question: should we tax today or should we postpone taxes and issue debt (\equiv future taxes)?
- What matters for this trade-off? the price of government debt.
- This paper: Build a general theory of optimal fiscal policy around the following "tax-smoothing" principle:

$$
\begin{equation*}
\underbrace{\text { Future taxes }}_{\text {MC of debt }}=\underbrace{\Phi \times \text { Marginal Revenue }}_{\text {MB of debt }} \tag{1}
\end{equation*}
$$

- Optimality condition wrt to (some measure of) debt.
- LHS: MC of issuing more debt: costly due to more taxes tomorrow.
- RHS: Marginal revenue of new debt issuance \times social value of relaxing the government budget.

The basic idea

- Question: should we tax today or should we postpone taxes and issue debt (\equiv future taxes)?
- What matters for this trade-off? the price of government debt.
- This paper: Build a general theory of optimal fiscal policy around the following "tax-smoothing" principle:

$$
\begin{equation*}
\underbrace{\text { Future taxes }}_{\text {MC of debt }} \propto \Phi \times \underbrace{\left[p+\frac{\partial p}{\partial b^{\prime}} \cdot b^{\prime}\right]}_{\text {MR of debt }} \tag{1}
\end{equation*}
$$

- Optimality condition wrt to (some measure of) debt.
- LHS: MC of issuing more debt: costly due to more taxes tomorrow.
- RHS: Marginal revenue of new debt issuance \times social value of relaxing the government budget.

The basic idea

- Question: should we tax today or should we postpone taxes and issue debt (\equiv future taxes)?
- What matters for this trade-off? the price of government debt.
- This paper: Build a general theory of optimal fiscal policy around the following "tax-smoothing" principle:

$$
\begin{equation*}
\underbrace{\text { Future taxes }}_{\text {MC of debt }} \propto \Phi \times \underbrace{\left[p+\frac{\partial p}{\partial b^{\prime}} \cdot b^{\prime}\right]}_{\text {MR of debt }} \tag{1}
\end{equation*}
$$

- Optimality condition wrt to (some measure of) debt.
- LHS: MC of issuing more debt: costly due to more taxes tomorrow.
- RHS: Marginal revenue of new debt issuance \times social value of relaxing the government budget.
- Principle: Levy more taxes on states/dates if $M R$ of debt is high
- \Rightarrow Tax more tomorrow vs today if it is cheaper to issue debt!

Asset markets matter

- Market value of the government debt portfolio depends on:

Asset markets matter

- Market value of the government debt portfolio depends on:
(1) Stochastic Discount Factor (e.g. time-additive or recursive utility).

Asset markets matter

- Market value of the government debt portfolio depends on:
(1) Stochastic Discount Factor (e.g. time-additive or recursive utility).
(2) Market structure (complete or incomplete markets).

Asset markets matter

- Market value of the government debt portfolio depends on:
(1) Stochastic Discount Factor (e.g. time-additive or recursive utility).
(2) Market structure (complete or incomplete markets).
(3) Timing protocol (commitment versus discretion).

Asset markets matter

- Market value of the government debt portfolio depends on:
(1) Stochastic Discount Factor (e.g. time-additive or recursive utility).
(2) Market structure (complete or incomplete markets).
(3) Timing protocol (commitment versus discretion).
- What I do: Take asset prices seriously.

Asset markets matter

- Market value of the government debt portfolio depends on:
(1) Stochastic Discount Factor (e.g. time-additive or recursive utility).
(2) Market structure (complete or incomplete markets).
(3) Timing protocol (commitment versus discretion).
- What I do: Take asset prices seriously.
- Use a plausible model of asset returns \Rightarrow (Generalized) recursive utility.

Asset markets matter

- Market value of the government debt portfolio depends on:
(1) Stochastic Discount Factor (e.g. time-additive or recursive utility).
(2) Market structure (complete or incomplete markets).
(3) Timing protocol (commitment versus discretion).
- What I do: Take asset prices seriously.
- Use a plausible model of asset returns \Rightarrow (Generalized) recursive utility.
- Market structure: consider complete or incomplete markets.

Asset markets matter

- Market value of the government debt portfolio depends on:
(1) Stochastic Discount Factor (e.g. time-additive or recursive utility).
(2) Market structure (complete or incomplete markets).
(3) Timing protocol (commitment versus discretion).
- What I do: Take asset prices seriously.
- Use a plausible model of asset returns \Rightarrow (Generalized) recursive utility.
- Market structure: consider complete or incomplete markets.
- Timing prot.: commitment for the presentation (for discretion see paper)

Asset markets matter

- Market value of the government debt portfolio depends on:
(1) Stochastic Discount Factor (e.g. time-additive or recursive utility).
(2) Market structure (complete or incomplete markets).
(3) Timing protocol (commitment versus discretion).
- What I do: Take asset prices seriously.
- Use a plausible model of asset returns \Rightarrow (Generalized) recursive utility.
- Market structure: consider complete or incomplete markets.
- Timing prot.: commitment for the presentation (for discretion see paper)
- The MR is activated with recursive utility.

Asset markets matter

- Market value of the government debt portfolio depends on:
(1) Stochastic Discount Factor (e.g. time-additive or recursive utility).
(2) Market structure (complete or incomplete markets).
(3) Timing protocol (commitment versus discretion).
- What I do: Take asset prices seriously.
- Use a plausible model of asset returns \Rightarrow (Generalized) recursive utility.
- Market structure: consider complete or incomplete markets.
- Timing prot.: commitment for the presentation (for discretion see paper)
- The MR is activated with recursive utility.
- The same principle Taxes $=\Phi \times M R$ emerges in each environment \nRightarrow tax-smoothing !

Asset markets matter

- Market value of the government debt portfolio depends on:
(1) Stochastic Discount Factor (e.g. time-additive or recursive utility).
(2) Market structure (complete or incomplete markets).
(3) Timing protocol (commitment versus discretion).
- What I do: Take asset prices seriously.
- Use a plausible model of asset returns \Rightarrow (Generalized) recursive utility.
- Market structure: consider complete or incomplete markets.
- Timing prot.: commitment for the presentation (for discretion see paper)
- The MR is activated with recursive utility.
- The same principle Taxes $=\Phi \times M R$ emerges in each environment \nRightarrow tax-smoothing !
- 4 Related literature

Preview of results

Preview of results

Complete markets

- Time-additive utility: Lucas and Stokey (1983)

Preview of results

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
- Keep labor tax essentially constant \Rightarrow tax-smoothing.

Preview of results

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
- Keep labor tax essentially constant \Rightarrow tax-smoothing.
- No drifts.

Preview of results

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
- Keep labor tax essentially constant \Rightarrow tax-smoothing.
- No drifts.
- No endogenous persistence.

Preview of results

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
- Keep labor tax essentially constant \Rightarrow tax-smoothing.
- No drifts.
- No endogenous persistence.
- Recursive utility.
- Taxes are not constant \Rightarrow tax more in good times and less in bad times.

Preview of results

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
- Keep labor tax essentially constant \Rightarrow tax-smoothing.
- No drifts.
- No endogenous persistence.
- Recursive utility.
- Taxes are not constant \Rightarrow tax more in good times and less in bad times.
- Back-loading of distortions.

Preview of results

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
- Keep labor tax essentially constant \Rightarrow tax-smoothing.
- No drifts.
- No endogenous persistence.
- Recursive utility.
- Taxes are not constant \Rightarrow tax more in good times and less in bad times.
- Back-loading of distortions.
- High endogenous persistence.

Preview of results

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
- Keep labor tax essentially constant \Rightarrow tax-smoothing.
- No drifts.
- No endogenous persistence.
- Recursive utility.
- Taxes are not constant \Rightarrow tax more in good times and less in bad times.
- Back-loading of distortions.
- High endogenous persistence.

Incomplete markets

Preview of results

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
- Keep labor tax essentially constant \Rightarrow tax-smoothing.
- No drifts.
- No endogenous persistence.
- Recursive utility.
- Taxes are not constant \Rightarrow tax more in good times and less in bad times.
- Back-loading of distortions.
- High endogenous persistence.

Incomplete markets

- Time-additive utility: Barro (1979) and Aiyagari et al. (2002)
- Tax more in bad times and less in good times.

Preview of results

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
- Keep labor tax essentially constant \Rightarrow tax-smoothing.
- No drifts.
- No endogenous persistence.
- Recursive utility.
- Taxes are not constant \Rightarrow tax more in good times and less in bad times.
- Back-loading of distortions.
- High endogenous persistence.

Incomplete markets

- Time-additive utility: Barro (1979) and Aiyagari et al. (2002)
- Tax more in bad times and less in good times.
- "Averaging" of distortions (taxes are random walks)

Preview of results

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
- Keep labor tax essentially constant \Rightarrow tax-smoothing.
- No drifts.
- No endogenous persistence.
- Recursive utility.
- Taxes are not constant \Rightarrow tax more in good times and less in bad times.
- Back-loading of distortions.
- High endogenous persistence.

Incomplete markets

- Time-additive utility: Barro (1979) and Aiyagari et al. (2002)
- Tax more in bad times and less in good times.
- "Averaging" of distortions (taxes are random walks)
- Recursive utility.

Preview of results

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
- Keep labor tax essentially constant \Rightarrow tax-smoothing.
- No drifts.
- No endogenous persistence.
- Recursive utility.
- Taxes are not constant \Rightarrow tax more in good times and less in bad times.
- Back-loading of distortions.
- High endogenous persistence.

Incomplete markets

- Time-additive utility: Barro (1979) and Aiyagari et al. (2002)
- Tax more in bad times and less in good times.
- "Averaging" of distortions (taxes are random walks)
- Recursive utility.
- Tax even more in bad times and even less in good times.

Preview of results

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
- Keep labor tax essentially constant \Rightarrow tax-smoothing.
- No drifts.
- No endogenous persistence.
- Recursive utility.
- Taxes are not constant \Rightarrow tax more in good times and less in bad times.
- Back-loading of distortions.
- High endogenous persistence.

Incomplete markets

- Time-additive utility: Barro (1979) and Aiyagari et al. (2002)
- Tax more in bad times and less in good times.
- "Averaging" of distortions (taxes are random walks)
- Recursive utility.
- Tax even more in bad times and even less in good times.
- Random-walk results break down (no "averaging").

Economy

- Economy without capital and exogenous and stochastic g_{t} (TFP shocks can be easily incorporated)

$$
c_{t}\left(g^{t}\right)+g_{t}=h_{t}\left(g^{t}\right)
$$

Economy

- Economy without capital and exogenous and stochastic g_{t} (TFP shocks can be easily incorporated)

$$
c_{t}\left(g^{t}\right)+g_{t}=h_{t}\left(g^{t}\right)
$$

- Two market structures:
(1) State-contingent debt (complete markets) as in Lucas and Stokey (1983):

$$
b_{t}\left(g^{t}\right)=\underbrace{\tau_{t}\left(g^{t}\right) w_{t}\left(g^{t}\right) h_{t}\left(g^{t}\right)-g_{t}}_{\text {primary surplus }}+\underbrace{\sum_{g_{t+1}} p_{t}\left(g_{t+1}, g^{t}\right) b_{t+1}\left(g^{t+1}\right)}_{\text {portfolio of new debt }}
$$

Economy

- Economy without capital and exogenous and stochastic g_{t} (TFP shocks can be easily incorporated)

$$
c_{t}\left(g^{t}\right)+g_{t}=h_{t}\left(g^{t}\right)
$$

- Two market structures:
(1) State-contingent debt (complete markets) as in Lucas and Stokey (1983):

$$
b_{t}\left(g^{t}\right)=\underbrace{\tau_{t}\left(g^{t}\right) w_{t}\left(g^{t}\right) h_{t}\left(g^{t}\right)-g_{t}}_{\text {primary surplus }}+\underbrace{\sum_{g_{t+1}} p_{t}\left(g_{t+1}, g^{t}\right) b_{t+1}\left(g^{t+1}\right)}_{\text {portfolio of new debt }}
$$

(2) Non-contingent debt as in Aiyagari et al. (2002):

$$
b_{t-1}\left(g^{t-1}\right)=\tau_{t}\left(g^{t}\right) w_{t}\left(g^{t}\right) h_{t}\left(g^{t}\right)-g_{t}+q_{t}\left(g^{t}\right) b_{t}\left(g^{t}\right)
$$

Preferences

- General form of recursive utility (Kreps and Porteus (1978)):

$$
V_{t}=u\left(c_{t}, 1-h_{t}\right)+\beta \underbrace{H^{-1}\left(E_{t} H\left(V_{t+1}\right)\right)}_{\text {Certainty equivalent } \mu_{t}}
$$

- H increasing and concave \Rightarrow aversion towards risks in V_{t+1}.
- $A(x) \equiv-H^{\prime \prime} / H^{\prime}$ coefficient of absolute risk aversion.
- Time-additive utility: $H(x)=x$.

Preferences

- General form of recursive utility (Kreps and Porteus (1978)):

$$
V_{t}=u\left(c_{t}, 1-h_{t}\right)+\beta \underbrace{H^{-1}\left(E_{t} H\left(V_{t+1}\right)\right)}_{\text {Certainty equivalent } \mu_{t}}
$$

- H increasing and concave \Rightarrow aversion towards risks in V_{t+1}.
- $A(x) \equiv-H^{\prime \prime} / H^{\prime}$ coefficient of absolute risk aversion.
- Time-additive utility: $H(x)=x$.
- Three parametric examples:

Preferences

- General form of recursive utility (Kreps and Porteus (1978)):

$$
V_{t}=u\left(c_{t}, 1-h_{t}\right)+\beta \underbrace{H^{-1}\left(E_{t} H\left(V_{t+1}\right)\right)}_{\text {Certainty equivalent } \mu_{t}}
$$

- H increasing and concave \Rightarrow aversion towards risks in V_{t+1}.
- $A(x) \equiv-H^{\prime \prime} / H^{\prime}$ coefficient of absolute risk aversion.
- Time-additive utility: $H(x)=x$.
- Three parametric examples:
(1) Constant absolute risk aversion: $H(x)=\frac{\exp (-A x)}{-A}, A>0$.

Preferences

- General form of recursive utility (Kreps and Porteus (1978)):

$$
V_{t}=u\left(c_{t}, 1-h_{t}\right)+\beta \underbrace{H^{-1}\left(E_{t} H\left(V_{t+1}\right)\right)}_{\text {Certainty equivalent } \mu_{t}}
$$

- H increasing and concave \Rightarrow aversion towards risks in V_{t+1}.
- $A(x) \equiv-H^{\prime \prime} / H^{\prime}$ coefficient of absolute risk aversion.
- Time-additive utility: $H(x)=x$.
- Three parametric examples:
(1) Constant absolute risk aversion: $H(x)=\frac{\exp (-A x)}{-A}, A>0$.
(2) Constant relative risk aversion: $H(x)=\frac{x^{1-\alpha}-1}{1-\alpha}, \alpha \neq 1, \alpha, u>0$.

Preferences

- General form of recursive utility (Kreps and Porteus (1978)):

$$
V_{t}=u\left(c_{t}, 1-h_{t}\right)+\beta \underbrace{H^{-1}\left(E_{t} H\left(V_{t+1}\right)\right)}_{\text {Certainty equivalent } \mu_{t}}
$$

- H increasing and concave \Rightarrow aversion towards risks in V_{t+1}.
- $A(x) \equiv-H^{\prime \prime} / H^{\prime}$ coefficient of absolute risk aversion.
- Time-additive utility: $H(x)=x$.
- Three parametric examples:
(1) Constant absolute risk aversion: $H(x)=\frac{\exp (-A x)}{-A}, A>0$.
(2) Constant relative risk aversion: $H(x)=\frac{x^{1-\alpha}-1}{1-\alpha}, \alpha \neq 1, \alpha, u>0$.
(3) Logarithmic case, $\alpha=1: H(x)=\ln x$.

Preferences

- General form of recursive utility (Kreps and Porteus (1978)):

$$
V_{t}=u\left(c_{t}, 1-h_{t}\right)+\beta \underbrace{H^{-1}\left(E_{t} H\left(V_{t+1}\right)\right)}_{\text {Certainty equivalent } \mu_{t}}
$$

- H increasing and concave \Rightarrow aversion towards risks in V_{t+1}.
- $A(x) \equiv-H^{\prime \prime} / H^{\prime}$ coefficient of absolute risk aversion.
- Time-additive utility: $H(x)=x$.
- Three parametric examples:
(1) Constant absolute risk aversion: $H(x)=\frac{\exp (-A x)}{-A}, A>0$.
(2) Constant relative risk aversion: $H(x)=\frac{x^{1-\alpha}-1}{1-\alpha}, \alpha \neq 1, \alpha, u>0$.
(3) Logarithmic case, $\alpha=1: H(x)=\ln x$.
- Nests the following: Epstein and Zin (1989), Weil (1990), Hansen and Sargent (2001), Tallarini (2000), Swanson (2018).

Stochastic Discount Factor

- Two components: Consumption (short-run) risk vs Continuation value risk (long-run):

$$
S_{t+1}=\beta \frac{u_{c, t+1}}{u_{c t}} \underbrace{\frac{H^{\prime}\left(V_{t+1}\right)}{H^{\prime}\left(\mu_{t}\right)}}_{\equiv m_{t+1}}
$$

Stochastic Discount Factor

- Two components: Consumption (short-run) risk vs Continuation value risk (long-run):

$$
S_{t+1}=\beta \frac{u_{c, t+1}}{u_{c t}} \underbrace{\frac{H^{\prime}\left(V_{t+1}\right)}{H^{\prime}\left(\mu_{t}\right)}}_{\equiv m_{t+1}}
$$

- Agent dislikes volatility in utility $\Rightarrow V_{t+1} \downarrow \Rightarrow \mathrm{SDF} \uparrow$.

Stochastic Discount Factor

- Two components: Consumption (short-run) risk vs Continuation value risk (long-run):

$$
S_{t+1}=\beta \frac{u_{c, t+1}}{u_{c t}} \underbrace{\frac{H^{\prime}\left(V_{t+1}\right)}{H^{\prime}\left(\mu_{t}\right)}}_{\equiv m_{t+1}}
$$

- Agent dislikes volatility in utility $\Rightarrow V_{t+1} \downarrow \Rightarrow \mathrm{SDF} \uparrow$.
- Exponential CE:

$$
m_{t+1}=\frac{\exp \left(-A V_{t+1}\right)}{E_{t} \exp \left(-A V_{t+1}\right)}, E_{t} m_{t+1}=1
$$

Stochastic Discount Factor

- Two components: Consumption (short-run) risk vs Continuation value risk (long-run):

$$
S_{t+1}=\beta \frac{u_{c, t+1}}{u_{c t}} \underbrace{\frac{H^{\prime}\left(V_{t+1}\right)}{H^{\prime}\left(\mu_{t}\right)}}_{\equiv m_{t+1}}
$$

- Agent dislikes volatility in utility $\Rightarrow V_{t+1} \downarrow \Rightarrow \mathrm{SDF} \uparrow$.
- Exponential CE:

$$
m_{t+1}=\frac{\exp \left(-A V_{t+1}\right)}{E_{t} \exp \left(-A V_{t+1}\right)}, E_{t} m_{t+1}=1
$$

- Power CE $(\alpha \neq 1)$:

$$
m_{t+1}=\left(\frac{V_{t+1}}{\mu_{t}}\right)^{-\alpha}=\kappa_{t+1}^{-\frac{\alpha}{1-\alpha}}, \quad \text { where } \quad \kappa_{t+1} \equiv \frac{V_{t+1}^{1-\alpha}}{E_{t} V_{t+1}^{1-\alpha}}, E_{t} \kappa_{t+1}=1
$$

Stochastic Discount Factor

- Two components: Consumption (short-run) risk vs Continuation value risk (long-run):

$$
S_{t+1}=\beta \frac{u_{c, t+1}}{u_{c t}} \underbrace{\frac{H^{\prime}\left(V_{t+1}\right)}{H^{\prime}\left(\mu_{t}\right)}}_{\equiv m_{t+1}}
$$

- Agent dislikes volatility in utility $\Rightarrow V_{t+1} \downarrow \Rightarrow \mathrm{SDF} \uparrow$.
- Exponential CE:

$$
m_{t+1}=\frac{\exp \left(-A V_{t+1}\right)}{E_{t} \exp \left(-A V_{t+1}\right)}, E_{t} m_{t+1}=1
$$

- Power CE $(\alpha \neq 1)$:

$$
m_{t+1}=\left(\frac{V_{t+1}}{\mu_{t}}\right)^{-\alpha}=\kappa_{t+1}-\frac{\alpha}{1-\alpha}, \quad \text { where } \quad \kappa_{t+1} \equiv \frac{V_{t+1}^{1-\alpha}}{E_{t} V_{t+1}^{1-\alpha}}, E_{t} \kappa_{t+1}=1
$$

- Logarithmic CE:

$$
m_{t+1}=\exp \left(-\left(v_{t+1}-E_{t} v_{t+1}\right)\right), \quad v_{t+1} \equiv \ln V_{t+1}, E_{t} \ln m_{t+1}=1
$$

Optimal policy under commitment

- Distortionary taxation:

$$
\frac{u_{l t}}{u_{c t}}=\left(1-\tau_{t}\right) w_{t}
$$

Optimal policy under commitment

- Distortionary taxation:

$$
\frac{u_{l t}}{u_{c t}}=\left(1-\tau_{t}\right) w_{t}
$$

- Optimal policy problem: choose τ to maximize the utility of the representative household at $t=0$.

Optimal policy under commitment

- Distortionary taxation:

$$
\frac{u_{l t}}{u_{c t}}=\left(1-\tau_{t}\right) w_{t}
$$

- Optimal policy problem: choose τ to maximize the utility of the representative household at $t=0$.
- Formulate commitment problem recursively as in Kydland and Prescott (1980).

Optimal policy under commitment

- Distortionary taxation:

$$
\frac{u_{l t}}{u_{c t}}=\left(1-\tau_{t}\right) w_{t}
$$

- Optimal policy problem: choose τ to maximize the utility of the representative household at $t=0$.
- Formulate commitment problem recursively as in Kydland and Prescott (1980).
- Important: V_{t} shows up in the implementability constraints due to recursive utility.

Optimal policy under commitment

- Distortionary taxation:

$$
\frac{u_{l t}}{u_{c t}}=\left(1-\tau_{t}\right) w_{t}
$$

- Optimal policy problem: choose τ to maximize the utility of the representative household at $t=0$.
- Formulate commitment problem recursively as in Kydland and Prescott (1980).
- Important: V_{t} shows up in the implementability constraints due to recursive utility.
- State variables
- Complete markets: $z_{t} \equiv u_{c t} b_{t}$, debt in MU units.
- Incomplete markets: $B_{t} \equiv E_{t} m_{t+1} u_{c, t+1} \cdot b_{t}$, debt in average MU units.

Optimal policy under commitment

- Distortionary taxation:

$$
\frac{u_{l t}}{u_{c t}}=\left(1-\tau_{t}\right) w_{t}
$$

- Optimal policy problem: choose τ to maximize the utility of the representative household at $t=0$.
- Formulate commitment problem recursively as in Kydland and Prescott (1980).
- Important: V_{t} shows up in the implementability constraints due to recursive utility.
- State variables
- Complete markets: $z_{t} \equiv u_{c t} b_{t}$, debt in MU units.
- Incomplete markets: $B_{t} \equiv E_{t} m_{t+1} u_{c, t+1} \cdot b_{t}$, debt in average MU units.
- Value function with complete markets:
- Value function with incomplete markets:

Optimal policy under commitment

- Distortionary taxation:

$$
\frac{u_{l t}}{u_{c t}}=\left(1-\tau_{t}\right) w_{t}
$$

- Optimal policy problem: choose τ to maximize the utility of the representative household at $t=0$.
- Formulate commitment problem recursively as in Kydland and Prescott (1980).
- Important: V_{t} shows up in the implementability constraints due to recursive utility.
- State variables
- Complete markets: $z_{t} \equiv u_{c t} b_{t}$, debt in MU units.
- Incomplete markets: $B_{t} \equiv E_{t} m_{t+1} u_{c, t+1} \cdot b_{t}$, debt in average MU units.
- Value function with complete markets:
- Value function with incomplete markets:
- Φ_{t} : excess burden (multiplier on implementability constraint) \Rightarrow Captures taxes.

Recursive utility: price effect of continuation values

- Let $g_{L}<g_{H}$. Planner insures ex-ante:
- sells debt against $g_{L} \Rightarrow$ to be paid with a surplus when $g^{\prime}=g_{L}$
- buys assets against $g_{H} \Rightarrow$ finances a deficit when $g^{\prime}=g_{H}$.

Recursive utility: price effect of continuation values

- Let $g_{L}<g_{H}$. Planner insures ex-ante:
- sells debt against $g_{L} \Rightarrow$ to be paid with a surplus when $g^{\prime}=g_{L}$
- buys assets against $g_{H} \Rightarrow$ finances a deficit when $g^{\prime}=g_{H}$.
- How much debt/assets?
- Expected utility: Make tax rate constant across $g_{i}, i=L, H$.

Recursive utility: price effect of continuation values

- Let $g_{L}<g_{H}$. Planner insures ex-ante:
- sells debt against $g_{L} \Rightarrow$ to be paid with a surplus when $g^{\prime}=g_{L}$
- buys assets against $g_{H} \Rightarrow$ finances a deficit when $g^{\prime}=g_{H}$.
- How much debt/assets?
- Expected utility: Make tax rate constant across $g_{i}, i=L, H$.
- Recursive utility: Planner over-insures:
- Sells more debt against g_{L} and increase taxes when $g^{\prime}=g_{L}$
- Buys more assets against g_{H} and decrease taxes when $g^{\prime}=g_{H}$.

Recursive utility: price effect of continuation values

- Let $g_{L}<g_{H}$. Planner insures ex-ante:
- sells debt against $g_{L} \Rightarrow$ to be paid with a surplus when $g^{\prime}=g_{L}$
- buys assets against $g_{H} \Rightarrow$ finances a deficit when $g^{\prime}=g_{H}$.
- How much debt/assets?
- Expected utility: Make tax rate constant across $g_{i}, i=L, H$.
- Recursive utility: Planner over-insures:
- Sells more debt against g_{L} and increase taxes when $g^{\prime}=g_{L}$
- Buys more assets against g_{H} and decrease taxes when $g^{\prime}=g_{H}$.
- Why? $\operatorname{Debt}_{L} \uparrow \Rightarrow V_{L} \downarrow \Rightarrow S D F_{L} \uparrow$: price of claims sold \uparrow.
- Tax more at g_{L} since it becomes cheaper to issue debt against g_{L}.
- Tax less at g_{H} because assets against g_{H} become more profitable $\left(S D F_{H} \downarrow\right)$.

Excess burden with complete markets I

- Optimality condition wrt $z_{t+1} \equiv u_{c, t+1} b_{t+1}$.

Excess burden with complete markets I

- Time-additive utility: Lucas and Stokey (1983)

$$
\underbrace{\Phi_{t+1}}_{\mathrm{MC}}=\underbrace{\Phi_{t}}_{\mathrm{MB}} \cdot 1, \forall t, s^{t}
$$

- MR part trivial \Rightarrow keep distortions constant over states and dates ("tax-smoothing").

Excess burden with complete markets I

- Recursive utility:

$$
\frac{1}{\Phi_{t+1}}=\frac{1}{\Phi_{t}}-\eta_{t+1}
$$

Excess burden with complete markets I

- Recursive utility:

$$
\frac{1}{\Phi_{t+1}}=\frac{1}{\Phi_{t}}-\eta_{t+1}
$$

- η_{t+1} : relative debt in MU units adjusted by $A(x) \equiv-A^{\prime \prime} / A^{\prime}$.

$$
\eta_{t+1} \equiv \underbrace{A\left(V_{t+1}\right) z_{t+1}}_{\text {"debt" }}-A\left(\mu_{t}\right) \overbrace{E_{t} m_{t+1} z_{t+1}}^{\text {value of portfolio }}
$$

Excess burden with complete markets I

- Recursive utility:

$$
\frac{1}{\Phi_{t+1}}=\frac{1}{\Phi_{t}}-\eta_{t+1}
$$

- η_{t+1} : relative debt in MU units adjusted by $A(x) \equiv-A^{\prime \prime} / A^{\prime}$.

$$
\eta_{t+1} \equiv \underbrace{A\left(V_{t+1}\right) z_{t+1}}_{\text {"debt" }}-A\left(\mu_{t}\right) \overbrace{E_{t} m_{t+1} z_{t+1}}^{\text {value of portfolio }}
$$

- $\eta_{t+1} \equiv 0$ for time-additive utility (or for the deterministic case).

Excess burden with complete markets II

- LoM in terms of inverse excess burden of taxation

$$
\frac{1}{\Phi_{t+1}}=\frac{1}{\Phi_{t}}-\eta_{t+1}
$$

- Tax more tomorrow vs today $\left(\Phi_{t+1}\left(g^{\prime}\right)>\Phi_{t}\right)$ when issue relatively more $\operatorname{debt}\left(\eta_{t+1}\left(g^{\prime}\right)>0\right)$.
- Tax less tomorrow vs today $\left(\Phi_{t+1}\left(g^{\prime}\right)<\Phi_{t}\right)$ when issue relatively less debt $\left(\eta_{t+1}\left(g^{\prime}\right)<0\right)$.

Excess burden with complete markets II

- LoM in terms of inverse excess burden of taxation

$$
\frac{1}{\Phi_{t+1}}=\frac{1}{\Phi_{t}}-\eta_{t+1}
$$

- Tax more tomorrow vs today $\left(\Phi_{t+1}\left(g^{\prime}\right)>\Phi_{t}\right)$ when issue relatively more debt $\left(\eta_{t+1}\left(g^{\prime}\right)>0\right)$.
- Tax less tomorrow vs today $\left(\Phi_{t+1}\left(g^{\prime}\right)<\Phi_{t}\right)$ when issue relatively less debt $\left(\eta_{t+1}\left(g^{\prime}\right)<0\right)$.
- Expect $\eta_{t+1}\left(g_{L}\right)>0>\eta_{t+1}\left(g_{H}\right)$ due to fiscal hedging (issue more debt against good times) $\Rightarrow \Phi_{t+1}\left(g_{L}\right)>\Phi_{t}>\Phi_{t+1}\left(g_{H}\right)$.

Excess burden with complete markets II

- LoM in terms of inverse excess burden of taxation

$$
\frac{1}{\Phi_{t+1}}=\frac{1}{\Phi_{t}}-\eta_{t+1}
$$

- Tax more tomorrow vs today $\left(\Phi_{t+1}\left(g^{\prime}\right)>\Phi_{t}\right)$ when issue relatively more debt $\left(\eta_{t+1}\left(g^{\prime}\right)>0\right)$.
- Tax less tomorrow vs today ($\Phi_{t+1}\left(g^{\prime}\right)<\Phi_{t}$) when issue relatively less debt $\left(\eta_{t+1}\left(g^{\prime}\right)<0\right)$.
- Expect $\eta_{t+1}\left(g_{L}\right)>0>\eta_{t+1}\left(g_{H}\right)$ due to fiscal hedging (issue more debt against good times) $\Rightarrow \Phi_{t+1}\left(g_{L}\right)>\Phi_{t}>\Phi_{t+1}\left(g_{H}\right)$.
- \Rightarrow Tax more in good times and less in bad times \Rightarrow amplify Lucas and Stokey (1983).

Excess burden with complete markets II

- LoM in terms of inverse excess burden of taxation

$$
\frac{1}{\Phi_{t+1}}=\frac{1}{\Phi_{t}}-\eta_{t+1}
$$

- Tax more tomorrow vs today $\left(\Phi_{t+1}\left(g^{\prime}\right)>\Phi_{t}\right)$ when issue relatively more debt $\left(\eta_{t+1}\left(g^{\prime}\right)>0\right)$.
- Tax less tomorrow vs today ($\Phi_{t+1}\left(g^{\prime}\right)<\Phi_{t}$) when issue relatively less debt $\left(\eta_{t+1}\left(g^{\prime}\right)<0\right)$.
- Expect $\eta_{t+1}\left(g_{L}\right)>0>\eta_{t+1}\left(g_{H}\right)$ due to fiscal hedging (issue more debt against good times) $\Rightarrow \Phi_{t+1}\left(g_{L}\right)>\Phi_{t}>\Phi_{t+1}\left(g_{H}\right)$.
- \Rightarrow Tax more in good times and less in bad times \Rightarrow amplify Lucas and Stokey (1983).
- \Rightarrow run larger surpluses in good times and larger deficits in bad times.

Excess burden with complete markets II

- LoM in terms of inverse excess burden of taxation

$$
\frac{1}{\Phi_{t+1}}=\frac{1}{\Phi_{t}}-\eta_{t+1}
$$

- Tax more tomorrow vs today $\left(\Phi_{t+1}\left(g^{\prime}\right)>\Phi_{t}\right)$ when issue relatively more debt $\left(\eta_{t+1}\left(g^{\prime}\right)>0\right)$.
- Tax less tomorrow vs today ($\Phi_{t+1}\left(g^{\prime}\right)<\Phi_{t}$) when issue relatively less debt $\left(\eta_{t+1}\left(g^{\prime}\right)<0\right)$.
- Expect $\eta_{t+1}\left(g_{L}\right)>0>\eta_{t+1}\left(g_{H}\right)$ due to fiscal hedging (issue more debt against good times) $\Rightarrow \Phi_{t+1}\left(g_{L}\right)>\Phi_{t}>\Phi_{t+1}\left(g_{H}\right)$.
- \Rightarrow Tax more in good times and less in bad times \Rightarrow amplify Lucas and Stokey (1983).
- \Rightarrow run larger surpluses in good times and larger deficits in bad times.
- parametric examples, persistence and drifts

Excess burden with complete markets II

- LoM in terms of inverse excess burden of taxation

$$
\frac{1}{\Phi_{t+1}}=\frac{1}{\Phi_{t}}-\eta_{t+1}
$$

- Tax more tomorrow vs today $\left(\Phi_{t+1}\left(g^{\prime}\right)>\Phi_{t}\right)$ when issue relatively more debt $\left(\eta_{t+1}\left(g^{\prime}\right)>0\right)$.
- Tax less tomorrow vs today ($\Phi_{t+1}\left(g^{\prime}\right)<\Phi_{t}$) when issue relatively less debt $\left(\eta_{t+1}\left(g^{\prime}\right)<0\right)$.
- Expect $\eta_{t+1}\left(g_{L}\right)>0>\eta_{t+1}\left(g_{H}\right)$ due to fiscal hedging (issue more debt against good times) $\Rightarrow \Phi_{t+1}\left(g_{L}\right)>\Phi_{t}>\Phi_{t+1}\left(g_{H}\right)$.
- \Rightarrow Tax more in good times and less in bad times \Rightarrow amplify Lucas and Stokey (1983).
- \Rightarrow run larger surpluses in good times and larger deficits in bad times.
- 4 parametric examples, persistence and drifts

What happens with incomplete markets?

- Debt non-contingent \Rightarrow less room for manipulation of SDF?

What happens with incomplete markets?

- Debt non-contingent \Rightarrow less room for manipulation of SDF?
- Let $g_{L}<g_{H}$. Planner issues non-contingent debt:

What happens with incomplete markets?

- Debt non-contingent \Rightarrow less room for manipulation of SDF?
- Let $g_{L}<g_{H}$. Planner issues non-contingent debt:
- In good times, $g^{\prime}=g_{L}$, the planner will tax less to repay debt and finance g_{L}.

What happens with incomplete markets?

- Debt non-contingent \Rightarrow less room for manipulation of SDF?
- Let $g_{L}<g_{H}$. Planner issues non-contingent debt:
- In good times, $g^{\prime}=g_{L}$, the planner will tax less to repay debt and finance g_{L}.
- In bad times, $g^{\prime}=g_{H}$, the planner will have to tax more to repay debt and finance g_{H}.

What happens with incomplete markets?

- Debt non-contingent \Rightarrow less room for manipulation of SDF?
- Let $g_{L}<g_{H}$. Planner issues non-contingent debt:
- In good times, $g^{\prime}=g_{L}$, the planner will tax less to repay debt and finance g_{L}.
- In bad times, $g^{\prime}=g_{H}$, the planner will have to tax more to repay debt and finance g_{H}.
- How much non-contingent debt does the planner issue?
- Expected utility: Make tax rate on average constant across $g_{i}, i=L, H$.

What happens with incomplete markets?

- Debt non-contingent \Rightarrow less room for manipulation of SDF?
- Let $g_{L}<g_{H}$. Planner issues non-contingent debt:
- In good times, $g^{\prime}=g_{L}$, the planner will tax less to repay debt and finance g_{L}.
- In bad times, $g^{\prime}=g_{H}$, the planner will have to tax more to repay debt and finance g_{H}.
- How much non-contingent debt does the planner issue?
- Expected utility: Make tax rate on average constant across $g_{i}, i=L, H$.
- Recursive utility:
- Is there a counter-acting force (tax more in good times and less in bad times)? NO.

What happens with incomplete markets?

- Debt non-contingent \Rightarrow less room for manipulation of SDF?
- Let $g_{L}<g_{H}$. Planner issues non-contingent debt:
- In good times, $g^{\prime}=g_{L}$, the planner will tax less to repay debt and finance g_{L}.
- In bad times, $g^{\prime}=g_{H}$, the planner will have to tax more to repay debt and finance g_{H}.
- How much non-contingent debt does the planner issue?
- Expected utility: Make tax rate on average constant across $g_{i}, i=L, H$.
- Recursive utility:
- Is there a counter-acting force (tax more in good times and less in bad times)? NO.
- Price manipulation: Use continuation values to make the average SDF (inverse of interest rate) large.

What happens with incomplete markets?

- Debt non-contingent \Rightarrow less room for manipulation of SDF?
- Let $g_{L}<g_{H}$. Planner issues non-contingent debt:
- In good times, $g^{\prime}=g_{L}$, the planner will tax less to repay debt and finance g_{L}.
- In bad times, $g^{\prime}=g_{H}$, the planner will have to tax more to repay debt and finance g_{H}.
- How much non-contingent debt does the planner issue?
- Expected utility: Make tax rate on average constant across $g_{i}, i=L, H$.
- Recursive utility:
- Is there a counter-acting force (tax more in good times and less in bad times)? NO.
- Price manipulation: Use continuation values to make the average SDF (inverse of interest rate) large.
- Result: put more tax distortions on events with high $u_{c} \Rightarrow$ tax even more bad times with high u_{c}.

Excess burden with incomplete markets II

- Optimality condition wrt to $B_{t} \equiv E_{t} m_{t+1} u_{c, t+1} b_{t}$:

Excess burden with incomplete markets II

- Time-additive utility: (AMSS 2002)

$$
E_{t} x_{t+1} \Phi_{t+1}=\Phi_{t}, \quad x_{t+1} \equiv \frac{u_{c, t+1}}{E_{t} u_{c, t+1}}
$$

\Rightarrow keep distortions on "average" constant (Barro (1979)).

Excess burden with incomplete markets II

- Recursive utility: LoM for the inverse average excess burden

$$
\frac{1}{E_{t} n_{t+1} \Phi_{t+1}}=\frac{1}{\Phi_{t}}-\frac{E_{t-1} n_{t} \Phi_{t}}{\Phi_{t}} \cdot \xi_{t} \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c, t+1}}{E_{t} m_{t+1} u_{c, t+1}}
$$

where ξ_{t} is the relative marginal utility adjusted by $A(x)$

$$
\xi_{t} \equiv A\left(V_{t}\right) u_{c t}-A\left(\mu_{t-1}\right) E_{t-1} m_{t} u_{c t}
$$

- MR: depends on ξ_{t} times non-contingent debt b_{t-1}.

Excess burden with incomplete markets II

- Recursive utility: LoM for the inverse average excess burden

$$
\frac{1}{E_{t} n_{t+1} \Phi_{t+1}}=\frac{1}{\Phi_{t}}-\frac{E_{t-1} n_{t} \Phi_{t}}{\Phi_{t}} \cdot \xi_{t} \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c, t+1}}{E_{t} m_{t+1} u_{c, t+1}}
$$

where ξ_{t} is the relative marginal utility adjusted by $A(x)$

$$
\xi_{t} \equiv A\left(V_{t}\right) u_{c t}-A\left(\mu_{t-1}\right) E_{t-1} m_{t} u_{c t}
$$

- MR: depends on ξ_{t} times non-contingent debt b_{t-1}.
- $\xi_{t} \equiv 0$ for the time-additive case.

Excess burden with incomplete markets II

- Recursive utility: LoM for the inverse average excess burden

$$
\frac{1}{E_{t} n_{t+1} \Phi_{t+1}}=\frac{1}{\Phi_{t}}-\frac{E_{t-1} n_{t} \Phi_{t}}{\Phi_{t}} \cdot \xi_{t} \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c, t+1}}{E_{t} m_{t+1} u_{c, t+1}}
$$

where ξ_{t} is the relative marginal utility adjusted by $A(x)$

$$
\xi_{t} \equiv A\left(V_{t}\right) u_{c t}-A\left(\mu_{t-1}\right) E_{t-1} m_{t} u_{c t}
$$

- MR: depends on ξ_{t} times non-contingent debt b_{t-1}.
- $\xi_{t} \equiv 0$ for the time-additive case.
- \Rightarrow Average tax distortions not constant anymore!

Excess burden with incomplete markets II

- Recursive utility: LoM for the inverse average excess burden

$$
\frac{1}{E_{t} n_{t+1} \Phi_{t+1}}=\frac{1}{\Phi_{t}}-\frac{E_{t-1} n_{t} \Phi_{t}}{\Phi_{t}} \cdot \xi_{t} \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c, t+1}}{E_{t} m_{t+1} u_{c, t+1}}
$$

where ξ_{t} is the relative marginal utility adjusted by $A(x)$

$$
\xi_{t} \equiv A\left(V_{t}\right) u_{c t}-A\left(\mu_{t-1}\right) E_{t-1} m_{t} u_{c t}
$$

- MR: depends on ξ_{t} times non-contingent debt b_{t-1}.
- $\xi_{t} \equiv 0$ for the time-additive case.
- \Rightarrow Average tax distortions not constant anymore!
- u_{c} high in bad times \Rightarrow expect $\xi_{t}\left(g_{H}\right)>0>\xi_{t}\left(g_{L}\right)$. Thus, if $b_{t-1}>0$
- $E_{t} n_{t+1} \Phi_{t+1}>\Phi_{t}$ if $g_{t}=g_{H}$.
- $E_{t} n_{t+1} \Phi_{t+1}<\Phi_{t}$ if $g_{t}=g_{L}$.

Excess burden with incomplete markets II

- Recursive utility: LoM for the inverse average excess burden

$$
\frac{1}{E_{t} n_{t+1} \Phi_{t+1}}=\frac{1}{\Phi_{t}}-\frac{E_{t-1} n_{t} \Phi_{t}}{\Phi_{t}} \cdot \xi_{t} \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c, t+1}}{E_{t} m_{t+1} u_{c, t+1}}
$$

where ξ_{t} is the relative marginal utility adjusted by $A(x)$

$$
\xi_{t} \equiv A\left(V_{t}\right) u_{c t}-A\left(\mu_{t-1}\right) E_{t-1} m_{t} u_{c t}
$$

- MR: depends on ξ_{t} times non-contingent debt b_{t-1}.
- $\xi_{t} \equiv 0$ for the time-additive case.
- \Rightarrow Average tax distortions not constant anymore!
- u_{c} high in bad times \Rightarrow expect $\xi_{t}\left(g_{H}\right)>0>\xi_{t}\left(g_{L}\right)$. Thus, if $b_{t-1}>0$
- $E_{t} n_{t+1} \Phi_{t+1}>\Phi_{t}$ if $g_{t}=g_{H}$.
- $E_{t} n_{t+1} \Phi_{t+1}<\Phi_{t}$ if $g_{t}=g_{L}$.
- Tax more in bad times and less in good times \Rightarrow larger weight on u_{c} in bad times $\left(q_{t} \uparrow\right) \Rightarrow$ amplify Aiyagari et al. (2002).

Concluding remarks

- Minimization of welfare distortions \Rightarrow tax more events against which it is cheap to issue debt (Taxes $=\Phi \times M R$).
- This insight holds in all environments \Rightarrow provides a general principle of taxation.
- This does not mean taxes are (on average or not) smooth!
- Taking asset prices seriously \Rightarrow amplification of standard taxation and debt issuance motives.

THANK YOU!

Related literature

Table: Optimal fiscal policy with time-additive utility.

	Commitment	Discretion
Complete	Lucas and Stokey (1983)	Krusell et al. (2004),
Markets	Chari et al. (1994), Zhu (1992)	Occhino (2012)
		Debortoli and Nunes (2013)
Incomplete	Aiyagari et al. (2002), Farhi (2010)	Martin (2009)
Markets	Bhandari et al. (2017)	Karantounias (2017)

Related literature

Table: Optimal fiscal policy with time-additive utility.

	Commitment	Discretion
Complete	Lucas and Stokey (1983)	Krusell et al. (2004),
Markets	Chari et al. (1994), Zhu (1992)	Occhino (2012)
		Debortoli and Nunes (2013)
Incomplete	Aiyagari et al. (2002), Farhi (2010)	Martin (2009)
Markets	Bhandari et al. (2017)	Karantounias (2017)

Table: Optimal fiscal policy with recursive utility.

	Commitment	Discretion
Complete	Karantounias (2018) : EZW utility	This paper
Markets	This paper: more general utility	
Incomplete	This paper	This paper
Markets		

Value function with complete markets under commitment

- $z \equiv u_{c} \cdot b$.

$$
V(z, g)=\max _{c \geq 0, h \in[0,1], z_{g^{\prime}}^{\prime} \in Z\left(g^{\prime}\right)} u(c, 1-h)+\beta H^{-1}\left(\sum_{g^{\prime}} \pi\left(g^{\prime} \mid g\right) H\left(V\left(z_{g^{\prime}}, g^{\prime}\right)\right)\right)
$$

subject to

$$
\begin{aligned}
& z=\underbrace{u_{c} c-u_{l} h}_{\text {surplus }}+\underbrace{\beta \sum_{g^{\prime}} \pi\left(g^{\prime} \mid g\right) m_{g^{\prime}}^{\prime} z_{g^{\prime}}^{\prime}}_{\text {price } \times \text { debt }} \\
& c+g=h
\end{aligned}
$$

Value function with complete markets under commitment

- $z \equiv u_{c} \cdot b$.

$$
V(z, g)=\max _{c \geq 0, h \in[0,1], z_{g^{\prime}}^{\prime} \in Z\left(g^{\prime}\right)} u(c, 1-h)+\beta H^{-1}\left(\sum_{g^{\prime}} \pi\left(g^{\prime} \mid g\right) H\left(V\left(z_{g^{\prime}}, g^{\prime}\right)\right)\right)
$$

subject to

$$
\begin{aligned}
& z=\underbrace{u_{c} c-u_{l} h}_{\text {surplus }}+\underbrace{\beta \sum_{g^{\prime}} \pi\left(g^{\prime} \mid g\right) m_{g^{\prime}}^{\prime} z_{g^{\prime}}^{\prime}}_{\text {price x debt }} \\
& c+g=h
\end{aligned}
$$

- Value functions in the constraint due to the SDF:

$$
m_{g^{\prime}}^{\prime} \equiv \frac{H^{\prime}\left(V\left(z_{g^{\prime}}^{\prime}, g^{\prime}\right)\right)}{H^{\prime}(\mu)}, \quad \text { and } \quad \mu \equiv H^{-1}\left(\sum_{g^{\prime}} \pi\left(g^{\prime} \mid g\right) H\left(V\left(z_{g^{\prime}}^{\prime}, g^{\prime}\right)\right)\right)
$$

- $m_{g^{\prime}}^{\prime} \equiv 1$ for time-additive utility.

Value function with incomplete markets under commitment

- State variable $B_{t} \equiv E_{t} m_{t+1} u_{c, t+1} \cdot b_{t}$.

Value function with incomplete markets under commitment

- State variable $B_{t} \equiv E_{t} m_{t+1} u_{c, t+1} \cdot b_{t}$.
- Commit to average marginal utility: promises across states g.

$$
W\left(B_{-}, g_{-}\right)=\max _{c_{g} \geq 0, h_{g} \in[0,1], B_{g}} H^{-1}\left(\sum_{g} \pi\left(g \mid g_{-}\right) H\left(u\left(c_{g}, 1-h_{g}\right)+\beta W\left(B_{g}, g\right)\right)\right)
$$

subject to

$$
\begin{aligned}
& \frac{u_{c}\left(c_{g}, 1-h_{g}\right)}{\sum_{g} \pi\left(g \mid g_{-}\right) m_{g} u_{c}\left(c_{g}, 1-h_{g}\right)} B_{-}=\underbrace{u_{c} c_{g}-u_{l} h_{g}}_{\text {surplus }}+\underbrace{\beta B_{g}}_{\text {new debt }}, \forall g \\
& c_{g}+g=h_{g}, \forall g \\
& \underline{B}_{g} \leq B_{g} \leq \bar{B}_{g}, \forall g .
\end{aligned}
$$

Value function with incomplete markets under commitment

- State variable $B_{t} \equiv E_{t} m_{t+1} u_{c, t+1} \cdot b_{t}$.
- Commit to average marginal utility: promises across states g.

$$
W\left(B_{-}, g_{-}\right)=\max _{c_{g} \geq 0, h_{g} \in[0,1], B_{g}} H^{-1}\left(\sum_{g} \pi\left(g \mid g_{-}\right) H\left(u\left(c_{g}, 1-h_{g}\right)+\beta W\left(B_{g}, g\right)\right)\right)
$$

subject to

$$
\begin{aligned}
& \frac{u_{c}\left(c_{g}, 1-h_{g}\right)}{\sum_{g} \pi\left(g \mid g_{-}\right) m_{g} u_{c}\left(c_{g}, 1-h_{g}\right)} B_{-}=\underbrace{u_{c} c_{g}-u_{l} h_{g}}_{\text {surplus }}+\underbrace{\beta B_{g}}_{\text {new debt }}, \forall g \\
& c_{g}+g=h_{g}, \forall g \\
& \underline{B}_{g} \leq B_{g} \leq \bar{B}_{g}, \forall g .
\end{aligned}
$$

- Value functions W in m_{g} :

$$
m_{g}=\frac{H^{\prime}\left(u\left(c_{g}, 1-h_{g}\right)+\beta W\left(B_{g}, g\right)\right)}{H^{\prime}\left(H^{-1}\left(\sum_{g} \pi\left(g \mid g_{-}\right) H\left(u\left(c_{g}, 1-h_{g}\right)+\beta W\left(B_{g}, g\right)\right)\right)\right)}, \forall g .
$$

Parametric examples and drifts

- Exponential CE:

$$
\eta_{t+1}=A \cdot\left[z_{t+1}-E_{t} m_{t+1} z_{t+1}\right] \Rightarrow E_{t} m_{t+1} \eta_{t+1}=0
$$

- $\Rightarrow 1 / \Phi_{t}$ martingale wrt $\pi_{t} \cdot M_{t}$

Parametric examples and drifts

- Exponential CE:

$$
\eta_{t+1}=A \cdot\left[z_{t+1}-E_{t} m_{t+1} z_{t+1}\right] \Rightarrow E_{t} m_{t+1} \eta_{t+1}=0
$$

$\bullet \Rightarrow 1 / \Phi_{t}$ martingale wrt $\pi_{t} \cdot M_{t} \Rightarrow \Phi_{t}$ submartingale wrt $\pi_{t} \cdot M_{t}$, $E_{t} m_{t+1} \Phi_{t+1} \geq \Phi_{t}$.

Parametric examples and drifts

- Exponential CE:

$$
\eta_{t+1}=A \cdot\left[z_{t+1}-E_{t} m_{t+1} z_{t+1}\right] \Rightarrow E_{t} m_{t+1} \eta_{t+1}=0
$$

- $\Rightarrow 1 / \Phi_{t}$ martingale wrt $\pi_{t} \cdot M_{t} \Rightarrow \Phi_{t}$ submartingale wrt $\pi_{t} \cdot M_{t}$, $E_{t} m_{t+1} \Phi_{t+1} \geq \Phi_{t}$.
- Drift wrt physical measure?

$$
E_{t} \Phi_{t+1} \geq \Phi_{t}-\operatorname{Cov}_{t}\left(m_{t+1}, \Phi_{t+1}\right)
$$

\Rightarrow if $\operatorname{Cov}_{t}<0 \Rightarrow$ positive drift wrt π_{t}.

Parametric examples and drifts

- Exponential CE:

$$
\eta_{t+1}=A \cdot\left[z_{t+1}-E_{t} m_{t+1} z_{t+1}\right] \Rightarrow E_{t} m_{t+1} \eta_{t+1}=0
$$

- $\Rightarrow 1 / \Phi_{t}$ martingale wrt $\pi_{t} \cdot M_{t} \Rightarrow \Phi_{t}$ submartingale wrt $\pi_{t} \cdot M_{t}$, $E_{t} m_{t+1} \Phi_{t+1} \geq \Phi_{t}$.
- Drift wrt physical measure?

$$
E_{t} \Phi_{t+1} \geq \Phi_{t}-\operatorname{Cov}_{t}\left(m_{t+1}, \Phi_{t+1}\right)
$$

\Rightarrow if $\operatorname{Cov}_{t}<0 \Rightarrow$ positive drift wrt π_{t}.

- Power CE, $\alpha \neq 1$

$$
\eta_{t+1}=\alpha \cdot\left[V_{t+1}^{-1} z_{t+1}-E_{t} \kappa_{t+1} V_{t+1}^{-1} z_{t+1}\right] \Rightarrow E_{t} \kappa_{t+1} \eta_{t+1}=0
$$

- $\Rightarrow 1 / \Phi_{t}$ martingale wrt $\pi_{t} \cdot K_{t} \Rightarrow$ positive drift wrt $\pi_{t} \cdot K_{t}$.

Parametric examples and drifts

- Exponential CE:

$$
\eta_{t+1}=A \cdot\left[z_{t+1}-E_{t} m_{t+1} z_{t+1}\right] \Rightarrow E_{t} m_{t+1} \eta_{t+1}=0
$$

- $\Rightarrow 1 / \Phi_{t}$ martingale wrt $\pi_{t} \cdot M_{t} \Rightarrow \Phi_{t}$ submartingale wrt $\pi_{t} \cdot M_{t}$, $E_{t} m_{t+1} \Phi_{t+1} \geq \Phi_{t}$.
- Drift wrt physical measure?

$$
E_{t} \Phi_{t+1} \geq \Phi_{t}-\operatorname{Cov}_{t}\left(m_{t+1}, \Phi_{t+1}\right)
$$

\Rightarrow if $\operatorname{Cov}_{t}<0 \Rightarrow$ positive drift wrt π_{t}.

- Power CE, $\alpha \neq 1$

$$
\eta_{t+1}=\alpha \cdot\left[V_{t+1}^{-1} z_{t+1}-E_{t} \kappa_{t+1} V_{t+1}^{-1} z_{t+1}\right] \Rightarrow E_{t} \kappa_{t+1} \eta_{t+1}=0
$$

- $\Rightarrow 1 / \Phi_{t}$ martingale wrt $\pi_{t} \cdot K_{t} \Rightarrow$ positive drift wrt $\pi_{t} \cdot K_{t}$.
- Logarithmic CE:

$$
\eta_{t+1}=V_{t+1}^{-1} z_{t+1}-E_{t} V_{t+1}^{-1} z_{t+1}
$$

$\bullet \Rightarrow 1 / \Phi_{t}$ martingale wrt $\pi_{t} \Rightarrow$ positive drift wrt π_{t}. .

Optimal tax rate I

- Complete markets and commitment, $t \geq 1$

$$
\tau_{t}=\frac{\Phi_{t}\left(\epsilon_{c c, t}+\epsilon_{c h, t}+\epsilon_{h h, t}+\epsilon_{h c, t}\right)}{1+\Phi_{t}\left(1+\epsilon_{h h, t}+\epsilon_{h c, t}\right)}
$$

where $\epsilon_{c c} \equiv-u_{c c} c / u_{c}, \epsilon_{c h} \equiv u_{c l} h / u_{c}$ and $\epsilon_{h h} \equiv-u_{l l} h / u_{l}, \epsilon_{h c} \equiv u_{c l} c / u_{l}$, the respective own and cross elasticities.

Optimal tax rate I

- Complete markets and commitment, $t \geq 1$

$$
\tau_{t}=\frac{\Phi_{t}\left(\epsilon_{c c, t}+\epsilon_{c h, t}+\epsilon_{h h, t}+\epsilon_{h c, t}\right)}{1+\Phi_{t}\left(1+\epsilon_{h h, t}+\epsilon_{h c, t}\right)}
$$

where $\epsilon_{c c} \equiv-u_{c c} c / u_{c}, \epsilon_{c h} \equiv u_{c l} h / u_{c}$ and $\epsilon_{h h} \equiv-u_{l l} h / u_{l}, \epsilon_{h c} \equiv u_{c l} c / u_{l}$, the respective own and cross elasticities.

- Assume a utility function with constant elasticities

$$
U(c, 1-h)=\frac{c^{1-\rho}-1}{1-\rho}-a_{h} \frac{h^{1+\phi_{h}}}{1+\phi_{h}}
$$

- $\Rightarrow \tau_{t}$ moves 1-1 with Φ_{t}, with law of motion

$$
\frac{1}{\tau_{t+1}}=\frac{1}{\tau_{t}}-\frac{1}{\rho+\phi_{h}} \eta_{t+1}
$$

Optimal tax rate II: Incomplete markets and commitment

- Power in c and h (constant Frisch): The optimal tax rate with recursive utility is

$$
\tau_{t}=\frac{\Phi_{t}\left(\rho+\phi_{h}\right)-\rho\left[\Phi_{t}-E_{t-1} n_{t} \Phi_{t}\right] \frac{b_{t-1}}{c_{t}}}{1-\left(E_{t-1} n_{t} \Phi_{t}\right) \xi_{t} b_{t-1}+\Phi_{t}\left(1+\phi_{h}\right)}
$$

- The respective tax rate for the time-additive case of Aiyagari et al. (2002) is

$$
\tau_{t}=\frac{\Phi_{t}\left(\rho+\phi_{h}\right)-\rho\left[\Phi_{t}-\Phi_{t-1}\right] \frac{b_{t-1}}{c_{t}}}{1+\Phi_{t}\left(1+\phi_{h}\right)}
$$

- if $\xi_{t}>0$ (marginal utility relatively high) \Rightarrow tax rate \uparrow.

Excess burden without commitment and complete markets

- Value functions: Complete markets- MPE

Excess burden without commitment and complete markets

- Value functions: Complete markets- MPE
- Excess burden with time-additive utility:

$$
\Phi_{t+1}=\Phi_{t} \cdot \underbrace{\left[1+\frac{u_{c c, t+1}-u_{c l, t+1}}{u_{c, t+1}} \frac{\partial \mathcal{C}}{\partial B_{t+1}} \cdot B_{t+1}\right]}_{\propto \Phi \times M R}
$$

Excess burden without commitment and complete markets

- Value functions: © Complete markets- MPE
- Excess burden with time-additive utility:

$$
\Phi_{t+1}=\Phi_{t} \cdot \underbrace{\left[1+\frac{u_{c c, t+1}-u_{c l, t+1}}{u_{c, t+1}} \frac{\partial \mathcal{C}}{\partial B_{t+1}} \cdot B_{t+1}\right]}_{\propto \Phi \times M R} .
$$

- Excess burden with recursive utility:

$$
\frac{1}{\Phi_{t+1}}=\left[1+\frac{u_{c c, t+1}-u_{c l, t+1}}{u_{c, t+1}} \frac{\partial \mathcal{C}}{\partial b_{t+1}} \cdot b_{t+1}\right]^{-1}\left[\frac{1}{\Phi_{t}}-\nu_{t+1}\right]
$$

- Relative "debt" position:

$$
\nu_{t+1} \equiv A\left(V_{t+1}\right) u_{c, t+1} b_{t+1}-A\left(\mu_{t}\right) \cdot E_{t} m_{t+1} u_{c, t+1} b_{t+1} .
$$

Excess burden without commitment and complete markets

- Value functions: Complete markets- MPE
- Excess burden with time-additive utility:

$$
\Phi_{t+1}=\Phi_{t} \cdot \underbrace{\left[1+\frac{u_{c c, t+1}-u_{c l, t+1}}{u_{c, t+1}} \frac{\partial \mathcal{C}}{\partial B_{t+1}} \cdot B_{t+1}\right]}_{\propto \Phi \times M R}
$$

- Excess burden with recursive utility:

$$
\frac{1}{\Phi_{t+1}}=\left[1+\frac{u_{c c, t+1}-u_{c l, t+1}}{u_{c, t+1}} \frac{\partial \mathcal{C}}{\partial b_{t+1}} \cdot b_{t+1}\right]^{-1}\left[\frac{1}{\Phi_{t}}-\nu_{t+1}\right]
$$

- Relative "debt" position:

$$
\nu_{t+1} \equiv A\left(V_{t+1}\right) u_{c, t+1} b_{t+1}-A\left(\mu_{t}\right) \cdot E_{t} m_{t+1} u_{c, t+1} b_{t+1}
$$

- u_{c}^{\prime} channel: tax more tomorrow vs today if you issue debt.
- V_{t+1} : tax more (less) if debt is relatively high (low).
- \Rightarrow the two incentives may oppose each other.

Excess burden without commitment and incomplete markets

- Value function:
- Excess burden with time-additive utility:

$$
E_{t} x_{t+1} \Phi_{t+1}=\Phi_{t} \cdot\left[1+E_{t} x_{t+1} \frac{u_{c c, t+1}-u_{c l, t+1}}{u_{c, t+1}} \frac{\partial \mathcal{C}}{\partial B_{t+1}} \cdot B_{t+1}\right]
$$

where $x_{t+1} \equiv u_{c, t+1} / E_{t} u_{c, t+1}$

Excess burden without commitment and incomplete markets

- Value function:
- Excess burden with time-additive utility:

$$
E_{t} x_{t+1} \Phi_{t+1}=\Phi_{t} \cdot\left[1+E_{t} x_{t+1} \frac{u_{c c, t+1}-u_{c l, t+1}}{u_{c, t+1}} \frac{\partial \mathcal{C}}{\partial B_{t+1}} \cdot B_{t+1}\right]
$$

where $x_{t+1} \equiv u_{c, t+1} / E_{t} u_{c, t+1}$

- Excess burden with recursive utility:

$$
E_{t} n_{t+1} \Phi_{t+1}\left(1-\xi_{t+1} b_{t} \Phi_{t}\right)=\Phi_{t}\left[1+E_{t} n_{t+1} \frac{u_{c c, t+1}-u_{c l, t+1}}{u_{c, t+1}} \mathcal{C}_{b, t+1} \cdot b_{t}\right]
$$

- with $\xi_{t+1} \equiv A\left(V_{t+1}\right) u_{c, t+1}-A\left(\mu_{t}\right) E_{t} m_{t+1} u_{c, t+1}$.
- "Averaging" with respect to n_{t+1} measure.
- Continuation value channel depends on relative marginal utility ξ_{t+1}.

Value function with complete markets and no commitment

- Markov-perfect equilibrium: state variable (b, g).

$$
V(b, g)=\max _{c, h, b_{g^{\prime}}^{\prime}} u(c, 1-h)+\beta H^{-1}\left(\sum_{g^{\prime}} \pi\left(g^{\prime} \mid g\right) H\left(V\left(b_{g^{\prime}}^{\prime}, g^{\prime}\right)\right)\right)
$$

subject to

$$
\begin{aligned}
& u_{c} b=u_{c} c-u_{l} h+\underbrace{\beta \sum_{g^{\prime}} \pi\left(g^{\prime} \mid g\right) m_{g^{\prime}}^{\prime} u_{c}\left(\mathcal{C}\left(b_{g^{\prime}}^{\prime}, g^{\prime}\right), 1-\mathcal{H}\left(b_{g^{\prime}}^{\prime}, g^{\prime}\right)\right) b_{g^{\prime}}^{\prime}}_{\text {Recursive utility }+ \text { Markov-perfect }} \\
& c+g=h
\end{aligned}
$$

- where $m_{g^{\prime}}^{\prime} \equiv \frac{H^{\prime}\left(V\left(b_{g^{\prime}}^{\prime}, g^{\prime}\right)\right)}{H^{\prime}(\mu)}$
- MPE: $c=\mathcal{C}, h=\mathcal{H}$.

Value function with incomplete markets and no commitment

- State variable is non-contingent debt: $\left(b_{-}, g\right)$.

$$
V\left(b_{-}, g\right)=\max _{c \geq 0, h \in[0,1], b \in \mathcal{B}} u(c, 1-h)+\beta H^{-1}\left(\sum_{g^{\prime}} \pi\left(g^{\prime} \mid g\right) H\left(V\left(b, g^{\prime}\right)\right)\right)
$$

subject to

$$
\begin{aligned}
& u_{c}(c, 1-h) b_{-}=u_{c} c-u_{l} h+\underbrace{\beta\left(\sum_{g^{\prime}} \pi\left(g^{\prime} \mid g\right) m_{g^{\prime}}^{\prime} u_{c}\left(\mathcal{C}\left(b, g^{\prime}\right), 1-\mathcal{H}\left(b, g^{\prime}\right)\right)\right)}_{\text {Average } \mathrm{MU}} \cdot b \\
& c+g=h
\end{aligned}
$$

where $m_{g^{\prime}}^{\prime} \equiv \frac{H^{\prime}\left(V\left(b, g^{\prime}\right)\right)}{H^{\prime}\left(H^{-1}\left(\sum_{g^{\prime}} \pi\left(g^{\prime} \mid g\right) H\left(V\left(b, g^{\prime}\right)\right)\right)\right)}$.

- MPE: $c=\mathcal{C}, h=\mathcal{H}$.

Numerical exercises- Karantounias (2018)

Calibration:

- Utility function: $\rho=1<\gamma$

$$
v_{t}=\ln c_{t}-a_{h} \frac{h_{t}^{1+\phi_{h}}}{1+\phi_{h}}+\frac{\beta}{(1-\beta)(1-\gamma)} \ln E_{t} \exp \left((1-\beta)(1-\gamma) v_{t+1}\right)
$$

- Parameters: $\left(\beta, \phi_{h}, \gamma\right)=(0.96,1,10)$
- Shocks
- i.i.d. shocks: mean 20% and std 2%.
- Chari et al. (1994) shocks.

Computational issues:

- Endogenous state space.
- Lack of the contraction property due to the value function in the constraint.
- Non-convexities.

Instructive sample path

g

Debt in marginal utility units z

Random sample paths

Volatility and back-loading of distortions

- Positive drift.
- Increasing volatility over time, "fanning-out" of the distribution.

Stationary moments

Tax rate in \%	i.i.d.	CCK shocks	$\mathbf{2 \times s t d}(\mathbf{g})$
Mean	30.86	30.49	31.26
St. Dev	4.94	5.52	7.76
St. Dev of Δ	0.17	0.41	0.90
Autocorrelation	0.9994	0.9972	0.9932

- Enormous volatility of the tax rate and therefore of debt.
- Chari et al. (1994): volatility of tax rate of 5-15 basis points.

Stationary distribution: debt

debt/output in \%	i.i.d.	CCK shocks	$\mathbf{2 \times s t d}(\mathbf{g})$
Mean	181.97	172.15	180.34
St. Dev	104.28	117.05	163.22
St. Dev of Δ	12.72	12.48	26.07
Autocorrelation	0.9926	0.9972	0.9877

Aiyagari, S. Rao, Albert Marcet, Thomas J. Sargent, and Juha Seppala. 2002. Optimal Taxation without State-Contingent Debt. Journal of Political Economy 110 (6):1220-1254.
Barro, Robert J. 1979. On the Determination of the Public Debt. Journal of Political Economy 87 (5):940-71.
Bhandari, Anmol, David Evans, Mikhail Golosov, and Thomas J. Sargent. 2017. Fiscal Policy and Debt Management with Incomplete Markets. Quarterly Journal of Economics 132 (1):617-663.
Chari, V.V., Lawrence J. Christiano, and Patrick J. Kehoe. 1994. Optimal Fiscal Policy in a Business Cycle Model. Journal of Political Economy 102 (4):617-652.
Debortoli, Davide and Ricardo Nunes. 2013. Lack of commitment and the level of debt. Journal of the European Economic Association 11 (5):1053-1078.
Epstein, Larry G. and Stanley E. Zin. 1989. Substitution, Risk Aversion and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework. Econometrica 57 (4):937-969.
Farhi, Emmanuel. 2010. Capital Taxation and Ownership when Markets are Incomplete. Journal of Political Economy 118 (5):908-948.
Hansen, Lars Peter and Thomas J. Sargent. 2001. Robust Control and Model Uncertainty. American Economic Review 91 (2):60-66.
Karantounias, Anastasios G. 2017. Greed versus fear: optimal

