Francesco Bianchi

Johns Hopkins University
Duke University
NBER & CEPR

Renato Faccini

Danmarks Nationalbank

Leonardo Melosi

FRB Chicago and CEPR

The views in this paper are solely those of the authors and should not be interpreted as reflecting the views of the Federal Reserve Bank of Chicago, the Federal Reserve System, the Danmarks Nationalbank or the European System of Central Banks.

- We build and estimate a TANK model with partially unfunded government debt:
 - Business cycle and monetary policy shocks propagate as usual
 - ② Unfunded fiscal shocks generate movements in trend inflation that the central bank accommodates ⇒ a fiscal theory of trend inflation

- We build and estimate a TANK model with partially unfunded government debt:
 - Business cycle and monetary policy shocks propagate as usual
 - ② Unfunded fiscal shocks generate movements in trend inflation that the central bank accommodates ⇒ a fiscal theory of trend inflation
- Fiscal theory trend inflation accounts for the bulk of the inflation dynamics:
 - A persistent and partially unfunded rise in transfers in the mid-1960s (Great Society) accounts for the increase in trend inflation during the Great Inflation
 - 2 Partially unfunded debt has offset the deflationary bias from the 1990s and on
 - 3 Recent sizable fiscal stimuli require policy coordination to avoid rise in trend inflation

What Does This Theory Predict for the Post-pandemic?

- Fiscal vulnerability and monetary policy: When spending is large, beliefs about what share of debt is unfunded may lead to large swings in trend inflation
- Historically, this share has been moving sluggishly in the US, but the future can be different from the past
- Monetary and fiscal policy coordination:
 - The fiscal authority needs a credible plan to stabilize the fraction of fiscally funded debt compatible with the central bank's target
 - 2 The central bank credibly committed to limit inflation deviations from this target
 - Meightened geopolitical risk may reduce the deflationary bias, requiring a reduction in the share of unfunded debt

A TANK Model with Partially Unfunded Debt

The Model

State-of-the-art TANK model

- Distortionary taxation on labor and capital income
- Hand-to-mouth households
- Long-term government bonds
- Typical set of business cycle shocks plus fiscal shocks and a shifter of the Phillips curve capturing market and non policy forces such as globalization and demographic changes

Underfunded Debt and Monetary and Fiscal Coordination

- Two types of transfers:
 - 1. Funded transfers: Transfers backed by future fiscal adjustments
 - ⇒ Monetary-led policy mix
 - 2. Unfunded transfers: Transfers not backed by future fiscal adjustments
 - ⇒ Fiscally-led policy mix
- The monetary authority tolerates the increase in inflation needed to stabilize the resulting amount of unfunded debt

Fiscal and Monetary Rules

Fiscal Rules

$$\hat{g}_{t} = \rho_{G}\hat{g}_{t-1} - (1 - \rho_{G}) \gamma_{G}\tilde{b}_{t-1}^{M} + \zeta_{g,t}$$

$$\hat{z}_{t} = \phi_{zy}\hat{y}_{t} + \rho_{Z}\hat{z}_{t-1} - (1 - \rho_{Z}) \gamma_{Z}\tilde{b}_{t-1}^{M} + \zeta_{z,t}^{M} + \zeta_{z,t}^{F}$$

$$\hat{\tau}_{t}^{L} = \rho_{L}\hat{\tau}_{t-1}^{L} + (1 - \rho_{L}) \gamma_{L}\tilde{b}_{t-1}^{M} + \zeta_{\tau_{L},t}$$

$$\hat{\tau}_{t}^{K} = \rho_{K}\hat{\tau}_{t-1}^{K} + (1 - \rho_{K}) \gamma_{K}\tilde{b}_{t-1}^{M} + \zeta_{\tau_{K},t}$$

Monetary Rule

$$\hat{R}_{t} = \max\left(-\ln R_{*}, \rho_{r}\hat{R}_{t-1} + (1-\rho_{r})\left[\phi_{\pi}\left(\hat{\pi}_{t} - \hat{\pi}_{t}^{\mathsf{F}}\right) + \phi_{y}\hat{y}_{t}\right]\right) + \epsilon_{R,t}$$

Definition of Funded Debt and the Inflation Target

- ullet The funded share of debt $ilde{b}_t^M$ is stabilized by fiscal instruments
 - 1. The parameters γ_G , γ_Z , γ_L , and γ_K are sufficiently large to back the funded debt \tilde{b}_t^M
 - 2. Changes in transfers ζ_{t}^{F} determine the share of unfunded debt

Definition of Funded Debt and the Inflation Target

- ullet The funded share of debt $ilde{b}_t^M$ is stabilized by fiscal instruments
 - 1. The parameters γ_G , γ_Z , γ_L , and γ_K are sufficiently large to back the funded debt \tilde{b}_t^M
 - 2. Changes in transfers ζ_{t}^{F} determine the share of unfunded debt
- The inflation target, $\hat{\pi}_t^F$, is the increase in inflation needed to stabilize the unfunded share of the debt $(\tilde{b}_t \tilde{b}_t^M)$
 - Monetary authority only responds to deviations of inflation from the endogenous target

Definition of Funded Debt and the Inflation Target

- ullet The funded share of debt $ilde{b}_t^M$ is stabilized by fiscal instruments
 - 1. The parameters γ_G , γ_Z , γ_L , and γ_K are sufficiently large to back the funded debt \tilde{b}_t^M
 - 2. Changes in transfers $\zeta_{z,t}^F$ determine the share of unfunded debt
- The inflation target, $\hat{\pi}_t^{\mathsf{F}}$, is the increase in inflation needed to stabilize the unfunded share of the debt $(\tilde{b}_t \tilde{b}_t^M)$
 - Monetary authority only responds to deviations of inflation from the endogenous target
- The funded debt and the inflation target are defined using a shadow economy

Constructing the Shadow Economy

Monetary-led policy mix in the shadow economy

- \to Shocks to unfunded transfers $\zeta_{z,t}^F$ are shut down and the whole public debt \tilde{b}_t^M in the shadow economy is funded
- \rightarrow Taylor principle is satisfied: Response to $\hat{\pi}_t^M$ more than one-to-one

Constructing the Shadow Economy

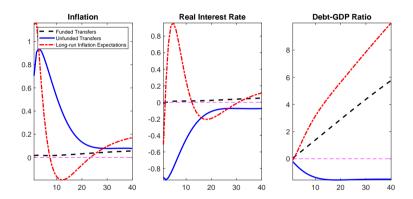
Monetary-led policy mix in the shadow economy

- \to Shocks to unfunded transfers $\zeta_{z,t}^F$ are shut down and the whole public debt \tilde{b}_t^M in the shadow economy is funded
- \rightarrow Taylor principle is satisfied: Response to $\hat{\pi}_t^M$ more than one-to-one

Fiscally-led policy mix in response to the unfunded debt

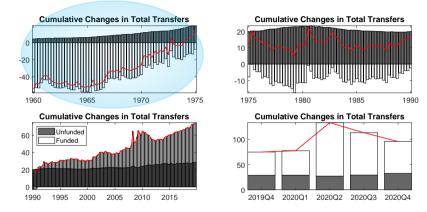
- ightarrow Debt in the actual economy is $ilde{b}_t > ilde{b}_t^M$
- → The inflation target in the actual economy is

$$\hat{\pi}_t^F \equiv \hat{\pi}_t - \hat{\pi}_t^M$$

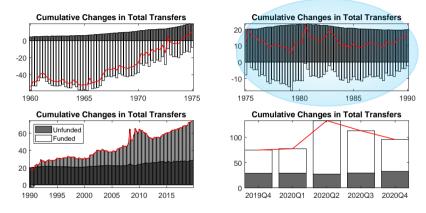

which is the change in inflation needed to stabilize the amount of unfunded debt

Empirical Analysis

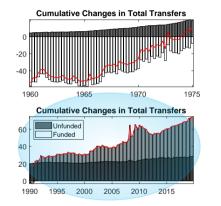
Estimation

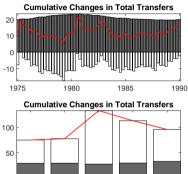

- The model is estimated using a data set of 20 macro and fiscal variables
 - 1. Real GDP growth
 - 2. Real consumption growth
 - 3. Real investment growth
 - 4. Hours worked
 - 5. Inflation (GDP deflator)
 - 6. Growth rate of real average weekly earnings
 - 7. Real transfers payments growth rate
 - 8. Real government consumption and investment growth rate
 - 9. Debt to GDP ratio
 - 10. Federal funds rate (FFR)
- 11-20. 1Q-10Q ahead expected market path of the FFR (OIS data)
- Sample periods: 1960q1-2007q4 and 2008q1-2020q4
- Second sample includes all the 20 observables; re-estimation of standard deviations and the factor model governing the forward guidance shocks (Campbell et al. 2012)

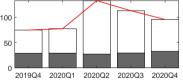
Identification of Unfunded Transfers Shocks


- Funded transfers: Modest impact on the macroeconomy, debt increase
- Unfunded transfers: Persistent inflation increase, real rate decline, debt decline
- Phillips curve shifter: Temporary inflation spike, real rate increase, debt increase

- Shocks to the unfunded portion of government debt are accommodated by the central bank
- These shocks lead to a **persistent** increase in inflation and inflation expectations
- Identification of these shocks rests on the joint dynamics of inflation, inflation expectations, real interest rates, and the debt-to-GDP ratio

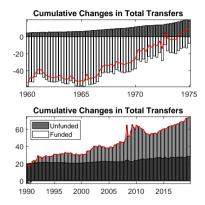

Four phases:

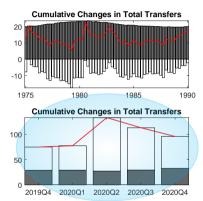

• From the 1960s to the mid-1970s: Large rise of unfunded transfers



Four phases:

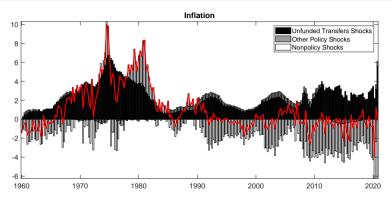
2 From the mid-1970s to the 1990s: Stability, with hump shape in unfunded transfers





Four phases:

From the 1990s to the Pandemic: Further rise, predominantly funded



Four phases:

The COVID stimulus package

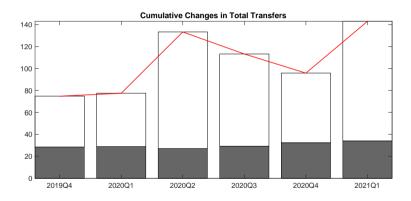

Drivers of Inflation

Unfunded spending:

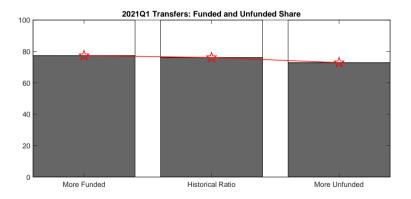
- Accounts for rise of trend inflation in the 1960s-1970s and decline in the 1980s
- Offsets the deflationary bias that non-policy shocks have set off since early 1990s

ARPA Fiscal Stimulus and Inflation

Baseline: Forecast based on filtered data up to 2020Q4


Counterfactual: Forecast including ARPA shock based on transfer payments in 2021Q1 attributed to funded and unfunded transfers according to historical pattern Scenarios

Concluding Remarks


- Fiscal vulnerability and monetary policy: When spending is large, beliefs about what share of spending is unfunded may lead to large swings in trend inflation
- Historically, this share has been moving sluggishly in the US, but the future can be different from the past
- Monetary and fiscal policy coordination:
 - The fiscal authority needs a credible plan to stabilize the fraction of fiscally funded debt compatible with the central bank's target
 - 2 The central bank credibly committed to limit inflation deviations from this target
 - 4 Heightened geopolitical risk may reduce the deflationary bias, requiring a reduction in the share of unfunded debt

Appendix

Funded and Unfunded Transfers (2020q1-2021q1)

Three Scenarios for the ARPA Transfers

Calibrated Parameters

Parameters Fixed in Estimation		
	Parameters	Values
Discount factor	β	0.9900
Debt maturity decay rate	ρ	0.9680
Capital depreciation rate	δ	0.0250
Elasticity of output to capital	α	0.3300
Wage markup	η_W	0.1400
Price markup	ηp	0.1400
Government expenditures to GDP ratio	Sgc	0.1100
Steady state tax rate on labor income	τ_L	0.1860
Steady state tax rate on capital income	τ_K^-	0.2180
Steady state tax rate on consumption	$\tau_{\mathcal{C}}$	0.0230

Prior and	Posterior D	istribution	for Structur	al Paramet	ers		
	Posterior Distribution						tion
Param	Mode	Median	5%	95%	Type	Mean	Std
s _b	2.1703	2.1834	2.0147	2.3497	Ň	1.8200	0.1000
100 $\overline{l}n\mu$	0.4000	0.4001	0.3255	0.4925	N	0.5000	0.0500
$100 \ln \Pi$	0.5402	0.5195	0.4267	0.6104	N	0.5000	0.0500
ξ	1.9704	1.9167	1.7493	2.1217	N	2.0000	0.2500
μ	0.0771	0.0778	0.0652	0.0925	N	0.1100	0.0100
$\omega_{\mathbf{W}}$	0.8041	0.8063	0.7861	0.8243	В	0.5000	0.1000
ω_{D}	0.8663	0.8666	0.8375	0.8897	В	0.5000	0.1000
ψ	0.6596	0.6572	0.5755	0.7502	В	0.5000	0.1000
s	5.7144	5.5214	5.0185	5.9213	N	6.0000	0.5000
χ_w	0.0372	0.0437	0.0164	0.0923	В	0.5000	0.2000
Xρ	0.3117	0.2782	0.1279	0.4101	В	0.5000	0.2000
$\dot{\theta}$	0.9106	0.9091	0.8985	0.9187	В	0.5000	0.2000
αG	-0.0455	-0.0396	-0.1832	0.0838	N	0.0000	0.1000

Drior an	d Postorio	Dietributio	n				
Prior and Posterior Distribution Posterior Distribution					Р	rior Distribu	ition
Param	Mode	Median	5%	95%	Type	Mean	Std
φγ	0.0012	0.0019	0.0001	0.0074	N	0.2500	0.1000
ϕ_{π}	2.0577	2.0963	1.9462	2.2525	N	2.0000	0.1000
ϕ_{zy}	0.0715	0.0439	0.0198	0.0719	G	0.1000	0.0500
γ_G	0.3800	0.3463	0.2218	0.4279	N	0.2500	0.1000
γκ	0.0043	0.0064	0.0003	0.0335	N	0.2500	0.1000
γ_L	0.0163	0.0133	0.0009	0.0461	N	0.2500	0.1000
γ_Z	0.0017	0.0063	0.0003	0.0249	N	0.2500	0.1000
ρ_r	0.7250	0.7223	0.6650	0.7746	В	0.5000	0.1000
ρ_G	0.9637	0.9627	0.9340	0.9803	В	0.5000	0.1000
ρ_Z	0.5007	0.4313	0.3430	0.5448	В	0.5000	0.1000
ρκ	0.5000	0.4690	0.3798	0.5586	В	0.5000	0.1000
ρĹ	0.4977	0.5015	0.3873	0.6409	В	0.5000	0.1000
PC	0.4996	0.4280	0.3698	0.4818	В	0.5000	0.1000

Prior and	Posterior I	Distribution					
	Posterior Distribution					rior Distribu	tion
Param	Mode	Median	5%	95%	Type	Mean	Std
ρeG	0.2868	0.3045	0.1506	0.3782	В	0.5000	0.1000
ρ _e G ρ _e Z	0.9954	0.9953	0.9933	0.9968	В	0.9950	0.0010
ρ_{eZ}^{F}	0.9958	0.9956	0.9937	0.9971	В	0.9950	0.0010
ρa	0.2987	0.2803	0.1711	0.3610	В	0.5000	0.1000
ρ_b	0.8237	0.8237	0.7774	0.8609	В	0.5000	0.1000
ρem	0.2407	0.2573	0.1692	0.3105	В	0.5000	0.1000
ρ_i	0.9205	0.9206	0.8990	0.9395	В	0.5000	0.1000
ρ_{rp}	0.9085	0.9062	0.8880	0.9220	В	0.5000	0.1000
ρ_{π} NKPC	0.9965	0.9966	0.9951	0.9977	В	0.9950	0.0010

		Prior a	nd Posterio	or Distribut	ion		
	Posterior Distribution					rior Distribu	tion
Param	Mode	Median	5%	95%	Type	Mean	Std
σ_G	1.9046	1.9306	1.7416	2.1419	IG	0.5000	0.2000
σ σ σ σ σ Z Γ	2.9635	2.8922	2.6631	3.0924	IG	0.5000	0.2000
σ_{Z}^{F}	0.5166	0.5500	0.4194	0.7319	IG	0.1000	0.0500
σ_a	1.2113	1.1989	1.0895	1.3349	IG	0.5000	0.2000
σ_{b}	4.9850	4.9782	4.9214	4.9986	IG	0.2500	0.2000
σ_{m}	0.2375	0.2406	0.2154	0.2691	IG	0.5000	0.2000
σ_i	0.5192	0.5318	0.4734	0.5955	IG	0.5000	0.2000
σ_{W}	0.3487	0.3512	0.3156	0.3912	IG	0.5000	0.2000
σ_{p}	0.1625	0.1640	0.1427	0.1877	IG	0.5000	0.2000
σ_{rp}	0.3914	0.3990	0.3441	0.4586	IG	0.5000	0.2000
σ_{π} NKPC	1.3255	1.3763	1.2106	1.6382	IG	0.1000	0.0500
σ_{GDP}^{m}	0.4330	0.4352	0.3947	0.4831	IG	0.5000	0.2000
σ_{GDP}^{m} σ_{by}^{m}	0.3160	0.3032	0.2221	0.4217	IG	0.5000	0.2000

Second Sample Estimates

	Prior and Posterior Distribution: Second sample								
	Posterior Distribution				Prior Distribution				
Param	Mode	Median	5%	95%	Type	Mean	Std		
σ_G	3.2021				IG	0.5000	0.2000		
σ _G σΖ σΕ	4.9982				IG	0.5000	0.2000		
σ_{Z}^{F}	1.0214				IG	0.1000	0.0500		
σ_a	3.7944				IG	0.5000	0.2000		
σ_b	4.9975				IG	0.2500	0.2000		
σ_{m}	0.1242				IG	0.5000	0.2000		
σ_i	2.5281				IG	0.5000	0.2000		
σ_{W}	0.6567				IG	0.5000	0.2000		
$\sigma_{\mathcal{D}}$	0.1630				IG	0.5000	0.2000		
σ_{rp}	2.8727				IG	0.5000	0.2000		
σ_{π} NKPC	4.9939				IG	0.1000	0.0500		
σ_{GDP}^{m}	1.7952				IG	0.5000	0.2000		
σ _{GDP} σ _{by}	4.9963				IG	0.5000	0.2000		

	Parameters
Debt to annualized GDP ratio	s_b
Steady-state growth rate	$100 \ln \mu$
Steady state inflation rate	100 ln Π
Inverse Frisch elasticity	ξ
Share of hand-to-mouth households	μ
Wage Calvo parameter	$\omega_{\mathbf{W}}$
Price Calvo parameter	ω_{p}
Capital utilization cost	ψ
Investment adjustment cost	s
Wage inflation indexing parameter	χw
Price inflation indexing parameter	χp
Habits in consumption	θ
Substitutability of private vs. gov. consumption	α_G

Notation of Model Parameters Parameters Taylor rule response to output ϕ_V Taylor rule response to inflation Transfers response to output ϕ_{ZY} Inverse Frisch elasticity Government consumption response to debt γ_G Tax on capital response to debt γ_K Tax on labor response to debt γ_L Transfers response to debt γ_Z Serial correlation on interest rate in Taylor rule ρ_r Serial correlation on government consumption rule ρ_G Serial correlation on transfers rule ρ_Z Serial correlation on capital tax rule ρ_K Serial correlation on labor tax rule Serial correlation on consumption tax rule ρ_C

	Parameters
AR coefficient on government consumption policy shocks	ρ _ę Ģ
AR coefficient on funded transfers' shocks	ρ_{eZ}^{M}
AR coefficient on unfunded transfers' shocks	ρ_{eZ}^{F}
AR coefficient on technology shocks	$\rho_{\mathbf{a}}$
AR coefficient on preference shocks	ρ_b
AR coefficient on monetary policy shocks	ρ_m
AR coefficient on investment shocks	ρ_i
AR coefficient on risk premium shocks	ρ_{rp}
AR coefficient on inflation drift shocks	ρ_{π} NKPC

	Parameters
Standard deviation government consumption shocks	σ_{G}
Standard deviation funded transfers' shocks	σ_Z^M
Standard deviation unfunded transfers' shocks	σ_Z^F
Standard deviation technology shocks	σ_a
Standard deviation preference shocks	σ_b
Standard deviation monetary policy shocks	σ_{m}
Standard deviation investment shocks	σ_i
Standard deviation wage markup shocks	σ_{W}
Standard deviation price markup shocks	σ_{D}
Standard deviation risk premium shocks	σ_{rp}
Standard deviation inflation drift shocks	σ_{π^*}
Measurement error on GDP	σ_{GDP}^{m}
Measurement error on debt to GDP ratio	σ_{bv}^{pr}

Production function:

$$\hat{y}_t = \frac{y + \Omega}{y} \left[\alpha \hat{k}_t + (1 - \alpha) \hat{L}_t \right]. \tag{1}$$

Capital-labor ratio:

$$\hat{r}_t^K - \hat{\mathbf{w}}_t = \hat{\mathbf{L}}_t - \hat{\mathbf{k}}_t. \tag{2}$$

Marginal cost:

$$\widehat{mc_t} = \alpha \hat{r}_t^k + (1 - \alpha) \, \hat{\mathbf{w}}_t. \tag{3}$$

Phillips curve:

$$\hat{\pi}_t = \frac{\beta}{1 + \chi_p \beta} E_t \hat{\pi}_{t+1} + \frac{\chi_p}{1 + \chi_p \beta} \hat{\pi}_{t-1} + \kappa_p \widehat{mc_t} + \kappa_p \hat{\eta}_t^p, \tag{4}$$

where $\kappa_p = \left[(1 - \beta \omega_p) (1 - \omega_p) \right] / \left[\omega_p (1 + \beta \chi_p) \right]$.

Saver household's FOC for consumption:

$$\hat{\lambda}_t^S = \hat{F}_t^b - \frac{\theta}{\mathbf{e}^{\gamma} - \theta} \hat{F}_t^a - \frac{\mathbf{e}^{\gamma}}{\mathbf{e}^{\gamma} - \theta} c_t^{*S} + \frac{\theta}{\mathbf{e}^{\gamma} - \theta} c_{t-1}^{*S} - \frac{\tau^C}{1 + \tau^C} \hat{\tau}_t^C, \tag{5}$$

where $\hat{F}_t^a = u_t^a - \gamma$.

Public/private consumption in utility:

$$\hat{c}_t^* = \frac{c^S}{c^S + \alpha_G g} \hat{c}_t^S + \frac{\alpha_G g}{c^S + \alpha_G g} \hat{g}_t. \tag{6}$$

Euler equation:

$$\hat{\lambda}_{t}^{S} = \hat{R}_{t} + E_{t} \hat{\lambda}_{t+1}^{S} - E_{t} \hat{\pi}_{t+1} - E_{t} \hat{F}_{t+1}^{a}. \tag{7}$$

Maturity structure of debt:

$$\hat{R}_t + \hat{P}_t^B = \frac{\rho}{R} E_t \hat{P}_{t+1}^B. \tag{8}$$

Saver household's FOC for capacity utilization:

$$r_t^k - \frac{\tau^K}{1 - \tau^K} \hat{\tau}_t^K = \frac{\psi}{1 - \psi} \hat{\nu}_t. \tag{9}$$

Saver household's FOC for capital:

$$\hat{q}_{t} = E_{t}\hat{\pi}_{t+1} - \hat{R}_{t} + \beta e^{-\gamma} \left(1 - \tau^{K} \right) r^{k} E_{t} \hat{r}_{t+1}^{k} - \beta e^{-\gamma} \tau^{K} r^{k} E_{t} \hat{\tau}_{t+1}^{K} + \beta e^{-\gamma} \left(1 - \delta \right) E_{t} \hat{q}_{t+1}.$$
(10)

Saver household's FOC for investment:

$$\hat{\imath}_{t} + \frac{1}{1+\beta}\hat{F}_{t}^{a} - \frac{1}{(1+\beta)se^{2\gamma}}\hat{q}_{t} - \hat{F}_{t}^{i} - \frac{\beta}{1+\beta}E_{t}\hat{\imath}_{t+1} - \frac{\beta}{1+\beta}E_{t}\hat{F}_{t+1}^{a} = \frac{1}{1+\beta}\hat{\imath}_{t-1}.$$
 (11)

Effective capital:

$$\hat{k}_t = \hat{v}_t + \hat{k}_{t-1} - \hat{F}_t^a. \tag{12}$$

Law of motion for capital:

$$\widehat{k}_{t} = (1 - \delta) e^{-\gamma} \left(\widehat{k}_{t-1} - \widehat{F}_{t}^{a} \right) + \left[1 - (1 - \delta) e^{-\gamma} \right] \left[(1 + \beta) s e^{2\gamma} + \widehat{\imath}_{t} \right]. \tag{13}$$

Hand-to-mouth household's budget constraint:

$$\tau^{C} c^{N} \hat{\tau}_{t}^{C} + \left(1 + \tau^{C}\right) c^{N} \hat{c}_{t}^{N} = \left(1 - \tau^{L}\right) wL \left(\hat{w}_{t} + \hat{L}_{t}\right) - \tau^{L} wL \hat{\tau}_{t}^{L} + z\hat{z}_{t}. \tag{14}$$

Aggregate households' consumption

$$c\hat{c}_t = c^S (1 - \mu) \, \hat{c}_t^S + c^N \mu \hat{c}_t^N.$$
 (15)

Wage equation:

$$\hat{w}_{t} = \frac{1}{1+\beta} \hat{w}_{t-1} + \frac{\beta}{1+\beta} E_{t} \hat{w}_{t+1} - \kappa_{w} \left[\hat{w}_{t} - \xi \hat{L}_{t} + \hat{\lambda}_{t}^{S} - \frac{\tau^{L}}{1-\tau^{L}} \hat{\tau}_{t}^{L} \right] \\
+ \frac{\chi^{w}}{1+\beta} \hat{\pi}_{t-1} - \frac{1+\beta\chi^{w}}{1+\beta} \hat{\pi}_{t} + \frac{\beta}{1+\beta} E_{t} \hat{\pi}_{t+1} + \frac{\chi}{1+\beta} \hat{F}_{t-1}^{a} - \frac{1+\beta\chi - \rho_{a}\beta}{1+\beta} \hat{F}_{t}^{a} + \kappa_{w} \hat{\eta} \mathcal{B})$$

where
$$\kappa_{w} \equiv \left[\left(1 - \beta \omega_{w} \right) \left(1 - \omega_{w} \right) \right] / \left[\omega_{w} \left(1 + \beta \right) \left(1 + \frac{\left(1 + \eta^{w} \right) \xi}{\eta^{w}} \right) \right]$$
.

Aggregate resource constraint:

$$y\hat{y}_{t} = c\hat{c}_{t} + i\hat{\imath}_{t} + g\hat{g}_{t} + \psi'(1) k\hat{\nu}_{t}. \tag{17}$$

31/14

Government budget constraint:

$$\frac{b}{y}\hat{b}_{t} + \tau^{K}r^{k}\frac{k}{y}\left[\hat{\tau}_{t}^{K} + \hat{r}_{t}^{k} + \hat{k}_{t}\right] + \tau^{L}w\frac{L}{y}\left[\hat{\tau}_{t}^{L} + \hat{w}_{t} + \hat{L}_{t}\right] + \tau^{C}\frac{c}{y}\left(\hat{\tau}_{t}^{C} + \hat{c}_{t}\right)$$

$$= \frac{1}{\beta}\frac{b}{y}\left[\hat{b}_{t-1} - \hat{\pi}_{t} - \hat{P}_{t-1}^{B} - \hat{F}_{t}^{a}\right] + \frac{b}{y}\frac{\rho}{e^{\gamma}}\hat{P}_{t}^{B} + \frac{g}{y}\hat{g}_{t} + \frac{z}{y}\hat{z}_{t}.$$
(18)

Fiscal Rules

$$\hat{g}_{t} = \rho_{G} \hat{g}_{t-1} - (1 - \rho_{G}) \gamma_{G} \tilde{b}_{t-1}^{*} + \zeta_{g,t}$$
(19)

$$\hat{z}_{t} = \phi_{zy}\hat{y}_{t} + \rho_{z}\hat{z}_{t-1} - (1 - \rho_{z})\gamma_{z}\tilde{b}_{t-1}^{*} + \zeta_{z,t}^{M} + \zeta_{z,t}^{F}$$
(20)

$$\hat{\tau}_{t}^{L} = \rho_{L} \hat{\tau}_{t-1}^{L} + (1 - \rho_{L}) \gamma_{L} \tilde{b}_{t-1}^{*} + \zeta_{\tau_{L}, t}$$
(21)

$$\hat{\tau}_{t}^{K} = \rho_{K} \hat{\tau}_{t-1}^{K} + (1 - \rho_{K}) \gamma_{K} \tilde{b}_{t-1}^{*} + \zeta_{\tau_{K}, t}$$
(22)

Monetary Rule:

$$\hat{R}_t = \max\left(-\ln R_*, \rho_r \hat{R}_{t-1} + (1 - \rho_r) \left[\phi_\pi \hat{\pi}_t^* + \phi_y \hat{y}_t\right]\right) + \epsilon_{R,t}$$
(23)

The variables with the * superscript in equations (19) to (23) above belong to the shadow economy.

The block of equations that characterize the shadow economy consists in an additional set of equations (1) to (18), where any variable that refers to the actual economy x_t is replaced by the same variable in the shadow economy x_t^* , plus the rule for the monetary authority

$$\hat{R}_t^* = \max\left(-\ln R_*, \rho_r \hat{R}_{t-1}^* + (1-\rho_r)\left[\phi_\pi \hat{\pi}_t^* + \phi_y \hat{y}_t^*\right]\right) + \epsilon_{R,t} \tag{24}$$

and the rules for the fiscal authority,

$$\hat{g}_{t}^{*} = \rho_{G} \hat{g}_{t-1}^{*} - (1 - \rho_{G}) \gamma_{G} \tilde{b}_{t-1}^{*} + \zeta_{g,t}$$
(25)

$$\hat{z}_{t}^{*} = \phi_{zy}\hat{y}_{t}^{*} + \rho_{z}\hat{z}_{t-1}^{*} - (1 - \rho_{z})\gamma_{z}\tilde{b}_{t-1}^{*} + \zeta_{z,t}^{M}$$
(26)

$$\hat{\tau}_{t}^{L*} = \rho_{L} \hat{\tau}_{t-1}^{L*} + (1 - \rho_{L}) \gamma_{L} \tilde{b}_{t-1}^{*} + \zeta_{\tau_{L},t}$$
(27)

$$\hat{\tau}_{t}^{K*} = \rho_{K} \hat{\tau}_{t-1}^{K*} + (1 - \rho_{K}) \gamma_{K} \tilde{b}_{t-1}^{*} + \zeta_{\tau_{K},t}.$$
(28)